Author: Yousef Saad
Publisher: SIAM
ISBN: 0898715342
Category : Mathematics
Languages : en
Pages : 537
Book Description
Mathematics of Computing -- General.
Iterative Methods for Sparse Linear Systems
Author: Yousef Saad
Publisher: SIAM
ISBN: 0898715342
Category : Mathematics
Languages : en
Pages : 537
Book Description
Mathematics of Computing -- General.
Publisher: SIAM
ISBN: 0898715342
Category : Mathematics
Languages : en
Pages : 537
Book Description
Mathematics of Computing -- General.
Functions of Matrices
Author: Nicholas J. Higham
Publisher: SIAM
ISBN: 0898717779
Category : Mathematics
Languages : en
Pages : 445
Book Description
A thorough and elegant treatment of the theory of matrix functions and numerical methods for computing them, including an overview of applications, new and unpublished research results, and improved algorithms. Key features include a detailed treatment of the matrix sign function and matrix roots; a development of the theory of conditioning and properties of the Fre;chet derivative; Schur decomposition; block Parlett recurrence; a thorough analysis of the accuracy, stability, and computational cost of numerical methods; general results on convergence and stability of matrix iterations; and a chapter devoted to the f(A)b problem. Ideal for advanced courses and for self-study, its broad content, references and appendix also make this book a convenient general reference. Contains an extensive collection of problems with solutions and MATLAB implementations of key algorithms.
Publisher: SIAM
ISBN: 0898717779
Category : Mathematics
Languages : en
Pages : 445
Book Description
A thorough and elegant treatment of the theory of matrix functions and numerical methods for computing them, including an overview of applications, new and unpublished research results, and improved algorithms. Key features include a detailed treatment of the matrix sign function and matrix roots; a development of the theory of conditioning and properties of the Fre;chet derivative; Schur decomposition; block Parlett recurrence; a thorough analysis of the accuracy, stability, and computational cost of numerical methods; general results on convergence and stability of matrix iterations; and a chapter devoted to the f(A)b problem. Ideal for advanced courses and for self-study, its broad content, references and appendix also make this book a convenient general reference. Contains an extensive collection of problems with solutions and MATLAB implementations of key algorithms.
Iterative Methods for Linear and Nonlinear Equations
Author: C. T. Kelley
Publisher: SIAM
ISBN: 0898713528
Category : Mathematics
Languages : en
Pages : 169
Book Description
Mathematics of Computing -- Numerical Analysis.
Publisher: SIAM
ISBN: 0898713528
Category : Mathematics
Languages : en
Pages : 169
Book Description
Mathematics of Computing -- Numerical Analysis.
Iterative Methods for Solving Linear Systems
Author: Anne Greenbaum
Publisher: SIAM
ISBN: 9781611970937
Category : Mathematics
Languages : en
Pages : 235
Book Description
Much recent research has concentrated on the efficient solution of large sparse or structured linear systems using iterative methods. A language loaded with acronyms for a thousand different algorithms has developed, and it is often difficult even for specialists to identify the basic principles involved. Here is a book that focuses on the analysis of iterative methods. The author includes the most useful algorithms from a practical point of view and discusses the mathematical principles behind their derivation and analysis. Several questions are emphasized throughout: Does the method converge? If so, how fast? Is it optimal, among a certain class? If not, can it be shown to be near-optimal? The answers are presented clearly, when they are known, and remaining important open questions are laid out for further study. Greenbaum includes important material on the effect of rounding errors on iterative methods that has not appeared in other books on this subject. Additional important topics include a discussion of the open problem of finding a provably near-optimal short recurrence for non-Hermitian linear systems; the relation of matrix properties such as the field of values and the pseudospectrum to the convergence rate of iterative methods; comparison theorems for preconditioners and discussion of optimal preconditioners of specified forms; introductory material on the analysis of incomplete Cholesky, multigrid, and domain decomposition preconditioners, using the diffusion equation and the neutron transport equation as example problems. A small set of recommended algorithms and implementations is included.
Publisher: SIAM
ISBN: 9781611970937
Category : Mathematics
Languages : en
Pages : 235
Book Description
Much recent research has concentrated on the efficient solution of large sparse or structured linear systems using iterative methods. A language loaded with acronyms for a thousand different algorithms has developed, and it is often difficult even for specialists to identify the basic principles involved. Here is a book that focuses on the analysis of iterative methods. The author includes the most useful algorithms from a practical point of view and discusses the mathematical principles behind their derivation and analysis. Several questions are emphasized throughout: Does the method converge? If so, how fast? Is it optimal, among a certain class? If not, can it be shown to be near-optimal? The answers are presented clearly, when they are known, and remaining important open questions are laid out for further study. Greenbaum includes important material on the effect of rounding errors on iterative methods that has not appeared in other books on this subject. Additional important topics include a discussion of the open problem of finding a provably near-optimal short recurrence for non-Hermitian linear systems; the relation of matrix properties such as the field of values and the pseudospectrum to the convergence rate of iterative methods; comparison theorems for preconditioners and discussion of optimal preconditioners of specified forms; introductory material on the analysis of incomplete Cholesky, multigrid, and domain decomposition preconditioners, using the diffusion equation and the neutron transport equation as example problems. A small set of recommended algorithms and implementations is included.
Convergence of Iterations for Linear Equations
Author: Olavi Nevanlinna
Publisher: Birkhäuser
ISBN: 3034885474
Category : Science
Languages : en
Pages : 187
Book Description
Assume that after preconditioning we are given a fixed point problem x = Lx + f (*) where L is a bounded linear operator which is not assumed to be symmetric and f is a given vector. The book discusses the convergence of Krylov subspace methods for solving fixed point problems (*), and focuses on the dynamical aspects of the iteration processes. For example, there are many similarities between the evolution of a Krylov subspace process and that of linear operator semigroups, in particular in the beginning of the iteration. A lifespan of an iteration might typically start with a fast but slowing phase. Such a behavior is sublinear in nature, and is essentially independent of whether the problem is singular or not. Then, for nonsingular problems, the iteration might run with a linear speed before a possible superlinear phase. All these phases are based on different mathematical mechanisms which the book outlines. The goal is to know how to precondition effectively, both in the case of "numerical linear algebra" (where one usually thinks of first fixing a finite dimensional problem to be solved) and in function spaces where the "preconditioning" corresponds to software which approximately solves the original problem.
Publisher: Birkhäuser
ISBN: 3034885474
Category : Science
Languages : en
Pages : 187
Book Description
Assume that after preconditioning we are given a fixed point problem x = Lx + f (*) where L is a bounded linear operator which is not assumed to be symmetric and f is a given vector. The book discusses the convergence of Krylov subspace methods for solving fixed point problems (*), and focuses on the dynamical aspects of the iteration processes. For example, there are many similarities between the evolution of a Krylov subspace process and that of linear operator semigroups, in particular in the beginning of the iteration. A lifespan of an iteration might typically start with a fast but slowing phase. Such a behavior is sublinear in nature, and is essentially independent of whether the problem is singular or not. Then, for nonsingular problems, the iteration might run with a linear speed before a possible superlinear phase. All these phases are based on different mathematical mechanisms which the book outlines. The goal is to know how to precondition effectively, both in the case of "numerical linear algebra" (where one usually thinks of first fixing a finite dimensional problem to be solved) and in function spaces where the "preconditioning" corresponds to software which approximately solves the original problem.
Iterative Methods for Linear Systems
Author: Maxim A. Olshanskii
Publisher: SIAM
ISBN: 1611973457
Category : Mathematics
Languages : en
Pages : 257
Book Description
Iterative Methods for Linear Systems offers a mathematically rigorous introduction to fundamental iterative methods for systems of linear algebraic equations. The book distinguishes itself from other texts on the topic by providing a straightforward yet comprehensive analysis of the Krylov subspace methods, approaching the development and analysis of algorithms from various algorithmic and mathematical perspectives, and going beyond the standard description of iterative methods by connecting them in a natural way to the idea of preconditioning.
Publisher: SIAM
ISBN: 1611973457
Category : Mathematics
Languages : en
Pages : 257
Book Description
Iterative Methods for Linear Systems offers a mathematically rigorous introduction to fundamental iterative methods for systems of linear algebraic equations. The book distinguishes itself from other texts on the topic by providing a straightforward yet comprehensive analysis of the Krylov subspace methods, approaching the development and analysis of algorithms from various algorithmic and mathematical perspectives, and going beyond the standard description of iterative methods by connecting them in a natural way to the idea of preconditioning.
KWIC Index for Numerical Algebra
Author: Alston Scott Householder
Publisher:
ISBN:
Category : Algebra
Languages : en
Pages : 552
Book Description
Publisher:
ISBN:
Category : Algebra
Languages : en
Pages : 552
Book Description
Lanczos Algorithms for Large Symmetric Eigenvalue Computations
Author: Jane K. Cullum
Publisher: SIAM
ISBN: 0898715237
Category : Mathematics
Languages : en
Pages : 290
Book Description
First published in 1985, this book presents background material, descriptions, and supporting theory relating to practical numerical algorithms for the solution of huge eigenvalue problems. This book deals with 'symmetric' problems. However, in this book, 'symmetric' also encompasses numerical procedures for computing singular values and vectors of real rectangular matrices and numerical procedures for computing eigenelements of nondefective complex symmetric matrices. Although preserving orthogonality has been the golden rule in linear algebra, most of the algorithms in this book conform to that rule only locally, resulting in markedly reduced memory requirements. Additionally, most of the algorithms discussed separate the eigenvalue (singular value) computations from the corresponding eigenvector (singular vector) computations. This separation prevents losses in accuracy that can occur in methods which, in order to be able to compute further into the spectrum, use successive implicit deflation by computed eigenvector or singular vector approximations.
Publisher: SIAM
ISBN: 0898715237
Category : Mathematics
Languages : en
Pages : 290
Book Description
First published in 1985, this book presents background material, descriptions, and supporting theory relating to practical numerical algorithms for the solution of huge eigenvalue problems. This book deals with 'symmetric' problems. However, in this book, 'symmetric' also encompasses numerical procedures for computing singular values and vectors of real rectangular matrices and numerical procedures for computing eigenelements of nondefective complex symmetric matrices. Although preserving orthogonality has been the golden rule in linear algebra, most of the algorithms in this book conform to that rule only locally, resulting in markedly reduced memory requirements. Additionally, most of the algorithms discussed separate the eigenvalue (singular value) computations from the corresponding eigenvector (singular vector) computations. This separation prevents losses in accuracy that can occur in methods which, in order to be able to compute further into the spectrum, use successive implicit deflation by computed eigenvector or singular vector approximations.
Spectra and Pseudospectra
Author: Lloyd N. Trefethen
Publisher: Princeton University Press
ISBN: 0691213100
Category : Mathematics
Languages : en
Pages : 626
Book Description
Pure and applied mathematicians, physicists, scientists, and engineers use matrices and operators and their eigenvalues in quantum mechanics, fluid mechanics, structural analysis, acoustics, ecology, numerical analysis, and many other areas. However, in some applications the usual analysis based on eigenvalues fails. For example, eigenvalues are often ineffective for analyzing dynamical systems such as fluid flow, Markov chains, ecological models, and matrix iterations. That's where this book comes in. This is the authoritative work on nonnormal matrices and operators, written by the authorities who made them famous. Each of the sixty sections is written as a self-contained essay. Each document is a lavishly illustrated introductory survey of its topic, complete with beautiful numerical experiments and all the right references. The breadth of included topics and the numerous applications that provide links between fields will make this an essential reference in mathematics and related sciences.
Publisher: Princeton University Press
ISBN: 0691213100
Category : Mathematics
Languages : en
Pages : 626
Book Description
Pure and applied mathematicians, physicists, scientists, and engineers use matrices and operators and their eigenvalues in quantum mechanics, fluid mechanics, structural analysis, acoustics, ecology, numerical analysis, and many other areas. However, in some applications the usual analysis based on eigenvalues fails. For example, eigenvalues are often ineffective for analyzing dynamical systems such as fluid flow, Markov chains, ecological models, and matrix iterations. That's where this book comes in. This is the authoritative work on nonnormal matrices and operators, written by the authorities who made them famous. Each of the sixty sections is written as a self-contained essay. Each document is a lavishly illustrated introductory survey of its topic, complete with beautiful numerical experiments and all the right references. The breadth of included topics and the numerous applications that provide links between fields will make this an essential reference in mathematics and related sciences.
Robustness
Author: Lars Peter Hansen
Publisher: Princeton University Press
ISBN: 0691170975
Category : Business & Economics
Languages : en
Pages : 453
Book Description
The standard theory of decision making under uncertainty advises the decision maker to form a statistical model linking outcomes to decisions and then to choose the optimal distribution of outcomes. This assumes that the decision maker trusts the model completely. But what should a decision maker do if the model cannot be trusted? Lars Hansen and Thomas Sargent, two leading macroeconomists, push the field forward as they set about answering this question. They adapt robust control techniques and apply them to economics. By using this theory to let decision makers acknowledge misspecification in economic modeling, the authors develop applications to a variety of problems in dynamic macroeconomics. Technical, rigorous, and self-contained, this book will be useful for macroeconomists who seek to improve the robustness of decision-making processes.
Publisher: Princeton University Press
ISBN: 0691170975
Category : Business & Economics
Languages : en
Pages : 453
Book Description
The standard theory of decision making under uncertainty advises the decision maker to form a statistical model linking outcomes to decisions and then to choose the optimal distribution of outcomes. This assumes that the decision maker trusts the model completely. But what should a decision maker do if the model cannot be trusted? Lars Hansen and Thomas Sargent, two leading macroeconomists, push the field forward as they set about answering this question. They adapt robust control techniques and apply them to economics. By using this theory to let decision makers acknowledge misspecification in economic modeling, the authors develop applications to a variety of problems in dynamic macroeconomics. Technical, rigorous, and self-contained, this book will be useful for macroeconomists who seek to improve the robustness of decision-making processes.