Author: G. Latouche
Publisher: SIAM
ISBN: 0898714257
Category : Mathematics
Languages : en
Pages : 331
Book Description
Presents the basic mathematical ideas and algorithms of the matrix analytic theory in a readable, up-to-date, and comprehensive manner.
Introduction to Matrix Analytic Methods in Stochastic Modeling
Author: G. Latouche
Publisher: SIAM
ISBN: 0898714257
Category : Mathematics
Languages : en
Pages : 331
Book Description
Presents the basic mathematical ideas and algorithms of the matrix analytic theory in a readable, up-to-date, and comprehensive manner.
Publisher: SIAM
ISBN: 0898714257
Category : Mathematics
Languages : en
Pages : 331
Book Description
Presents the basic mathematical ideas and algorithms of the matrix analytic theory in a readable, up-to-date, and comprehensive manner.
Fundamentals of Matrix-Analytic Methods
Author: Qi-Ming He
Publisher: Springer Science & Business Media
ISBN: 1461473306
Category : Computers
Languages : en
Pages : 363
Book Description
Fundamentals of Matrix-Analytic Methods targets advanced-level students in mathematics, engineering and computer science. It focuses on the fundamental parts of Matrix-Analytic Methods, Phase-Type Distributions, Markovian arrival processes and Structured Markov chains and matrix geometric solutions. New materials and techniques are presented for the first time in research and engineering design. This book emphasizes stochastic modeling by offering probabilistic interpretation and constructive proofs for Matrix-Analytic Methods. Such an approach is especially useful for engineering analysis and design. Exercises and examples are provided throughout the book.
Publisher: Springer Science & Business Media
ISBN: 1461473306
Category : Computers
Languages : en
Pages : 363
Book Description
Fundamentals of Matrix-Analytic Methods targets advanced-level students in mathematics, engineering and computer science. It focuses on the fundamental parts of Matrix-Analytic Methods, Phase-Type Distributions, Markovian arrival processes and Structured Markov chains and matrix geometric solutions. New materials and techniques are presented for the first time in research and engineering design. This book emphasizes stochastic modeling by offering probabilistic interpretation and constructive proofs for Matrix-Analytic Methods. Such an approach is especially useful for engineering analysis and design. Exercises and examples are provided throughout the book.
Introduction to Matrix-Analytic Methods in Queues 2
Author: Srinivas R. Chakravarthy
Publisher: John Wiley & Sons
ISBN: 1786308231
Category : Mathematics
Languages : en
Pages : 453
Book Description
Matrix-analytic methods (MAM) were introduced by Professor Marcel Neuts and have been applied to a variety of stochastic models since. In order to provide a clear and deep understanding of MAM while showing their power, this book presents MAM concepts and explains the results using a number of worked-out examples. This book's approach will inform and kindle the interest of researchers attracted to this fertile field. To allow readers to practice and gain experience in the algorithmic and computational procedures of MAM, Introduction to Matrix-Analytic Methods in Queues 2 provides a number of computational exercises. It also incorporates simulation as another tool for studying complex stochastic models, especially when the state space of the underlying stochastic models under analytic study grows exponentially. This book's detailed approach will make it more accessible for readers interested in learning about MAM in stochastic models.
Publisher: John Wiley & Sons
ISBN: 1786308231
Category : Mathematics
Languages : en
Pages : 453
Book Description
Matrix-analytic methods (MAM) were introduced by Professor Marcel Neuts and have been applied to a variety of stochastic models since. In order to provide a clear and deep understanding of MAM while showing their power, this book presents MAM concepts and explains the results using a number of worked-out examples. This book's approach will inform and kindle the interest of researchers attracted to this fertile field. To allow readers to practice and gain experience in the algorithmic and computational procedures of MAM, Introduction to Matrix-Analytic Methods in Queues 2 provides a number of computational exercises. It also incorporates simulation as another tool for studying complex stochastic models, especially when the state space of the underlying stochastic models under analytic study grows exponentially. This book's detailed approach will make it more accessible for readers interested in learning about MAM in stochastic models.
An Introduction to Queueing Theory
Author: L. Breuer
Publisher: Springer Science & Business Media
ISBN: 1402036310
Category : Mathematics
Languages : en
Pages : 274
Book Description
The present textbook contains the recordsof a two–semester course on que- ing theory, including an introduction to matrix–analytic methods. This course comprises four hours oflectures and two hours of exercises per week andhas been taughtattheUniversity of Trier, Germany, for about ten years in - quence. The course is directed to last year undergraduate and?rst year gr- uate students of applied probability and computer science, who have already completed an introduction to probability theory. Its purpose is to present - terial that is close enough to concrete queueing models and their applications, while providing a sound mathematical foundation for the analysis of these. Thus the goal of the present book is two–fold. On the one hand, students who are mainly interested in applications easily feel bored by elaborate mathematical questions in the theory of stochastic processes. The presentation of the mathematical foundations in our courses is chosen to cover only the necessary results, which are needed for a solid foundation of the methods of queueing analysis. Further, students oriented - wards applications expect to have a justi?cation for their mathematical efforts in terms of immediate use in queueing analysis. This is the main reason why we have decided to introduce new mathematical concepts only when they will be used in the immediate sequel. On the other hand, students of applied probability do not want any heur- tic derivations just for the sake of yielding fast results for the model at hand.
Publisher: Springer Science & Business Media
ISBN: 1402036310
Category : Mathematics
Languages : en
Pages : 274
Book Description
The present textbook contains the recordsof a two–semester course on que- ing theory, including an introduction to matrix–analytic methods. This course comprises four hours oflectures and two hours of exercises per week andhas been taughtattheUniversity of Trier, Germany, for about ten years in - quence. The course is directed to last year undergraduate and?rst year gr- uate students of applied probability and computer science, who have already completed an introduction to probability theory. Its purpose is to present - terial that is close enough to concrete queueing models and their applications, while providing a sound mathematical foundation for the analysis of these. Thus the goal of the present book is two–fold. On the one hand, students who are mainly interested in applications easily feel bored by elaborate mathematical questions in the theory of stochastic processes. The presentation of the mathematical foundations in our courses is chosen to cover only the necessary results, which are needed for a solid foundation of the methods of queueing analysis. Further, students oriented - wards applications expect to have a justi?cation for their mathematical efforts in terms of immediate use in queueing analysis. This is the main reason why we have decided to introduce new mathematical concepts only when they will be used in the immediate sequel. On the other hand, students of applied probability do not want any heur- tic derivations just for the sake of yielding fast results for the model at hand.
Matrix Analysis for Statistics
Author: James R. Schott
Publisher: John Wiley & Sons
ISBN: 1119092485
Category : Mathematics
Languages : en
Pages : 547
Book Description
An up-to-date version of the complete, self-contained introduction to matrix analysis theory and practice Providing accessible and in-depth coverage of the most common matrix methods now used in statistical applications, Matrix Analysis for Statistics, Third Edition features an easy-to-follow theorem/proof format. Featuring smooth transitions between topical coverage, the author carefully justifies the step-by-step process of the most common matrix methods now used in statistical applications, including eigenvalues and eigenvectors; the Moore-Penrose inverse; matrix differentiation; and the distribution of quadratic forms. An ideal introduction to matrix analysis theory and practice, Matrix Analysis for Statistics, Third Edition features: • New chapter or section coverage on inequalities, oblique projections, and antieigenvalues and antieigenvectors • Additional problems and chapter-end practice exercises at the end of each chapter • Extensive examples that are familiar and easy to understand • Self-contained chapters for flexibility in topic choice • Applications of matrix methods in least squares regression and the analyses of mean vectors and covariance matrices Matrix Analysis for Statistics, Third Edition is an ideal textbook for upper-undergraduate and graduate-level courses on matrix methods, multivariate analysis, and linear models. The book is also an excellent reference for research professionals in applied statistics. James R. Schott, PhD, is Professor in the Department of Statistics at the University of Central Florida. He has published numerous journal articles in the area of multivariate analysis. Dr. Schott’s research interests include multivariate analysis, analysis of covariance and correlation matrices, and dimensionality reduction techniques.
Publisher: John Wiley & Sons
ISBN: 1119092485
Category : Mathematics
Languages : en
Pages : 547
Book Description
An up-to-date version of the complete, self-contained introduction to matrix analysis theory and practice Providing accessible and in-depth coverage of the most common matrix methods now used in statistical applications, Matrix Analysis for Statistics, Third Edition features an easy-to-follow theorem/proof format. Featuring smooth transitions between topical coverage, the author carefully justifies the step-by-step process of the most common matrix methods now used in statistical applications, including eigenvalues and eigenvectors; the Moore-Penrose inverse; matrix differentiation; and the distribution of quadratic forms. An ideal introduction to matrix analysis theory and practice, Matrix Analysis for Statistics, Third Edition features: • New chapter or section coverage on inequalities, oblique projections, and antieigenvalues and antieigenvectors • Additional problems and chapter-end practice exercises at the end of each chapter • Extensive examples that are familiar and easy to understand • Self-contained chapters for flexibility in topic choice • Applications of matrix methods in least squares regression and the analyses of mean vectors and covariance matrices Matrix Analysis for Statistics, Third Edition is an ideal textbook for upper-undergraduate and graduate-level courses on matrix methods, multivariate analysis, and linear models. The book is also an excellent reference for research professionals in applied statistics. James R. Schott, PhD, is Professor in the Department of Statistics at the University of Central Florida. He has published numerous journal articles in the area of multivariate analysis. Dr. Schott’s research interests include multivariate analysis, analysis of covariance and correlation matrices, and dimensionality reduction techniques.
Matrix Analysis
Author: Rajendra Bhatia
Publisher: Springer Science & Business Media
ISBN: 1461206537
Category : Mathematics
Languages : en
Pages : 360
Book Description
This book presents a substantial part of matrix analysis that is functional analytic in spirit. Topics covered include the theory of majorization, variational principles for eigenvalues, operator monotone and convex functions, and perturbation of matrix functions and matrix inequalities. The book offers several powerful methods and techniques of wide applicability, and it discusses connections with other areas of mathematics.
Publisher: Springer Science & Business Media
ISBN: 1461206537
Category : Mathematics
Languages : en
Pages : 360
Book Description
This book presents a substantial part of matrix analysis that is functional analytic in spirit. Topics covered include the theory of majorization, variational principles for eigenvalues, operator monotone and convex functions, and perturbation of matrix functions and matrix inequalities. The book offers several powerful methods and techniques of wide applicability, and it discusses connections with other areas of mathematics.
Perturbation Methods in Matrix Analysis and Control
Author: Mihail M. Konstantinov
Publisher: Nova Science Publishers
ISBN: 9781536174700
Category : Control theory
Languages : en
Pages : 281
Book Description
Notation and preliminaries -- Perturbation problems -- Splitting operators and Lyapunov majorants -- Schur decomposition -- Hamiltonian matrices : basic relations -- Hamiltonian matrices : asymptotic analysis -- Hamiltonian matrices : non-local analysis -- Orthogonal canonical forms -- Feedback synthesis problem.
Publisher: Nova Science Publishers
ISBN: 9781536174700
Category : Control theory
Languages : en
Pages : 281
Book Description
Notation and preliminaries -- Perturbation problems -- Splitting operators and Lyapunov majorants -- Schur decomposition -- Hamiltonian matrices : basic relations -- Hamiltonian matrices : asymptotic analysis -- Hamiltonian matrices : non-local analysis -- Orthogonal canonical forms -- Feedback synthesis problem.
Matrix Analysis and Computations
Author: Zhong-Zhi Bai
Publisher: SIAM
ISBN: 1611976634
Category : Mathematics
Languages : en
Pages : 496
Book Description
This comprehensive book is presented in two parts; the first part introduces the basics of matrix analysis necessary for matrix computations, and the second part presents representative methods and the corresponding theories in matrix computations. Among the key features of the book are the extensive exercises at the end of each chapter. Matrix Analysis and Computations provides readers with the matrix theory necessary for matrix computations, especially for direct and iterative methods for solving systems of linear equations. It includes systematic methods and rigorous theory on matrix splitting iteration methods and Krylov subspace iteration methods, as well as current results on preconditioning and iterative methods for solving standard and generalized saddle-point linear systems. This book can be used as a textbook for graduate students as well as a self-study tool and reference for researchers and engineers interested in matrix analysis and matrix computations. It is appropriate for courses in numerical analysis, numerical optimization, data science, and approximation theory, among other topics
Publisher: SIAM
ISBN: 1611976634
Category : Mathematics
Languages : en
Pages : 496
Book Description
This comprehensive book is presented in two parts; the first part introduces the basics of matrix analysis necessary for matrix computations, and the second part presents representative methods and the corresponding theories in matrix computations. Among the key features of the book are the extensive exercises at the end of each chapter. Matrix Analysis and Computations provides readers with the matrix theory necessary for matrix computations, especially for direct and iterative methods for solving systems of linear equations. It includes systematic methods and rigorous theory on matrix splitting iteration methods and Krylov subspace iteration methods, as well as current results on preconditioning and iterative methods for solving standard and generalized saddle-point linear systems. This book can be used as a textbook for graduate students as well as a self-study tool and reference for researchers and engineers interested in matrix analysis and matrix computations. It is appropriate for courses in numerical analysis, numerical optimization, data science, and approximation theory, among other topics
Matrix Methods for Advanced Structural Analysis
Author: Manolis Papadrakakis
Publisher: Butterworth-Heinemann
ISBN: 0128118822
Category : Technology & Engineering
Languages : en
Pages : 468
Book Description
Divided into 12 chapters, Matrix Methods for Advanced Structural Analysis begins with an introduction to the analysis of structures (fundamental concepts and basic steps of structural analysis, primary structural members and their modeling, brief historical overview of methods of static analysis, programming principles, and suggestions for the rational use of computer programs). This is followed by the principal steps of the Direct Stiffness Method including plane trusses, plane framed structures, space trusses, and space framed structures. The case of plane or space framed structure, including possible rigid elements at their beam ends (rigid joints) is discussed in detail. Other topics discussed in this reference include the procedure for analyzing beams with internal releases (partial connection of beam elements) and elastic hinges, as well as the alternative handling of internal releases by modifying the element stiffness matrix. Furthermore, the Method of Substructures is demonstrated for the solution of large-scale models in terms of the associated number of degrees of freedom. - The principal steps of the Direct Stiffness Method are presented for plane and space trusses, as well as plane and space framed structures - The handling of beams with internal releases and elastic hinges - The method of substructures for large-scale structures - A computer code (basic steps and source files) based on MATLAB® software for the analysis of beam-like structures
Publisher: Butterworth-Heinemann
ISBN: 0128118822
Category : Technology & Engineering
Languages : en
Pages : 468
Book Description
Divided into 12 chapters, Matrix Methods for Advanced Structural Analysis begins with an introduction to the analysis of structures (fundamental concepts and basic steps of structural analysis, primary structural members and their modeling, brief historical overview of methods of static analysis, programming principles, and suggestions for the rational use of computer programs). This is followed by the principal steps of the Direct Stiffness Method including plane trusses, plane framed structures, space trusses, and space framed structures. The case of plane or space framed structure, including possible rigid elements at their beam ends (rigid joints) is discussed in detail. Other topics discussed in this reference include the procedure for analyzing beams with internal releases (partial connection of beam elements) and elastic hinges, as well as the alternative handling of internal releases by modifying the element stiffness matrix. Furthermore, the Method of Substructures is demonstrated for the solution of large-scale models in terms of the associated number of degrees of freedom. - The principal steps of the Direct Stiffness Method are presented for plane and space trusses, as well as plane and space framed structures - The handling of beams with internal releases and elastic hinges - The method of substructures for large-scale structures - A computer code (basic steps and source files) based on MATLAB® software for the analysis of beam-like structures
Matrix Theory
Author: Fuzhen Zhang
Publisher: Springer Science & Business Media
ISBN: 1475757972
Category : Mathematics
Languages : en
Pages : 290
Book Description
This volume concisely presents fundamental ideas, results, and techniques in linear algebra and mainly matrix theory. Each chapter focuses on the results, techniques, and methods that are beautiful, interesting, and representative, followed by carefully selected problems. For many theorems several different proofs are given. The only prerequisites are a decent background in elementary linear algebra and calculus.
Publisher: Springer Science & Business Media
ISBN: 1475757972
Category : Mathematics
Languages : en
Pages : 290
Book Description
This volume concisely presents fundamental ideas, results, and techniques in linear algebra and mainly matrix theory. Each chapter focuses on the results, techniques, and methods that are beautiful, interesting, and representative, followed by carefully selected problems. For many theorems several different proofs are given. The only prerequisites are a decent background in elementary linear algebra and calculus.