Matrices in Combinatorics and Graph Theory

Matrices in Combinatorics and Graph Theory PDF Author: Bolian Liu
Publisher: Springer Science & Business Media
ISBN: 9780792364696
Category : Mathematics
Languages : en
Pages : 326

Get Book Here

Book Description
Combinatorics and Matrix Theory have a symbiotic, or mutually beneficial, relationship. This relationship is discussed in my paper The symbiotic relationship of combinatorics and matrix theoryl where I attempted to justify this description. One could say that a more detailed justification was given in my book with H. J. Ryser entitled Combinatorial Matrix Theon? where an attempt was made to give a broad picture of the use of combinatorial ideas in matrix theory and the use of matrix theory in proving theorems which, at least on the surface, are combinatorial in nature. In the book by Liu and Lai, this picture is enlarged and expanded to include recent developments and contributions of Chinese mathematicians, many of which have not been readily available to those of us who are unfamiliar with Chinese journals. Necessarily, there is some overlap with the book Combinatorial Matrix Theory. Some of the additional topics include: spectra of graphs, eulerian graph problems, Shannon capacity, generalized inverses of Boolean matrices, matrix rearrangements, and matrix completions. A topic to which many Chinese mathematicians have made substantial contributions is the combinatorial analysis of powers of nonnegative matrices, and a large chapter is devoted to this topic. This book should be a valuable resource for mathematicians working in the area of combinatorial matrix theory. Richard A. Brualdi University of Wisconsin - Madison 1 Linear Alg. Applies., vols. 162-4, 1992, 65-105 2Camhridge University Press, 1991.

Matrices in Combinatorics and Graph Theory

Matrices in Combinatorics and Graph Theory PDF Author: Bolian Liu
Publisher: Springer Science & Business Media
ISBN: 9780792364696
Category : Mathematics
Languages : en
Pages : 326

Get Book Here

Book Description
Combinatorics and Matrix Theory have a symbiotic, or mutually beneficial, relationship. This relationship is discussed in my paper The symbiotic relationship of combinatorics and matrix theoryl where I attempted to justify this description. One could say that a more detailed justification was given in my book with H. J. Ryser entitled Combinatorial Matrix Theon? where an attempt was made to give a broad picture of the use of combinatorial ideas in matrix theory and the use of matrix theory in proving theorems which, at least on the surface, are combinatorial in nature. In the book by Liu and Lai, this picture is enlarged and expanded to include recent developments and contributions of Chinese mathematicians, many of which have not been readily available to those of us who are unfamiliar with Chinese journals. Necessarily, there is some overlap with the book Combinatorial Matrix Theory. Some of the additional topics include: spectra of graphs, eulerian graph problems, Shannon capacity, generalized inverses of Boolean matrices, matrix rearrangements, and matrix completions. A topic to which many Chinese mathematicians have made substantial contributions is the combinatorial analysis of powers of nonnegative matrices, and a large chapter is devoted to this topic. This book should be a valuable resource for mathematicians working in the area of combinatorial matrix theory. Richard A. Brualdi University of Wisconsin - Madison 1 Linear Alg. Applies., vols. 162-4, 1992, 65-105 2Camhridge University Press, 1991.

Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs PDF Author: Jason J. Molitierno
Publisher: CRC Press
ISBN: 1439863393
Category : Computers
Languages : en
Pages : 423

Get Book Here

Book Description
On the surface, matrix theory and graph theory seem like very different branches of mathematics. However, adjacency, Laplacian, and incidence matrices are commonly used to represent graphs, and many properties of matrices can give us useful information about the structure of graphs.Applications of Combinatorial Matrix Theory to Laplacian Matrices o

Combinatorics and Graph Theory

Combinatorics and Graph Theory PDF Author: John Harris
Publisher: Springer Science & Business Media
ISBN: 0387797114
Category : Mathematics
Languages : en
Pages : 392

Get Book Here

Book Description
These notes were first used in an introductory course team taught by the authors at Appalachian State University to advanced undergraduates and beginning graduates. The text was written with four pedagogical goals in mind: offer a variety of topics in one course, get to the main themes and tools as efficiently as possible, show the relationships between the different topics, and include recent results to convince students that mathematics is a living discipline.

Graphs and Matrices

Graphs and Matrices PDF Author: Ravindra B. Bapat
Publisher: Springer
ISBN: 1447165691
Category : Mathematics
Languages : en
Pages : 197

Get Book Here

Book Description
This new edition illustrates the power of linear algebra in the study of graphs. The emphasis on matrix techniques is greater than in other texts on algebraic graph theory. Important matrices associated with graphs (for example, incidence, adjacency and Laplacian matrices) are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration. The inclusion of exercises enables practical learning throughout the book. In the new edition, a new chapter is added on the line graph of a tree, while some results in Chapter 6 on Perron-Frobenius theory are reorganized. Whilst this book will be invaluable to students and researchers in graph theory and combinatorial matrix theory, it will also benefit readers in the sciences and engineering.

Matrices in Combinatorics and Graph Theory

Matrices in Combinatorics and Graph Theory PDF Author: Bolian Liu
Publisher: Springer Science & Business Media
ISBN: 1475731655
Category : Mathematics
Languages : en
Pages : 317

Get Book Here

Book Description
Combinatorics and Matrix Theory have a symbiotic, or mutually beneficial, relationship. This relationship is discussed in my paper The symbiotic relationship of combinatorics and matrix theoryl where I attempted to justify this description. One could say that a more detailed justification was given in my book with H. J. Ryser entitled Combinatorial Matrix Theon? where an attempt was made to give a broad picture of the use of combinatorial ideas in matrix theory and the use of matrix theory in proving theorems which, at least on the surface, are combinatorial in nature. In the book by Liu and Lai, this picture is enlarged and expanded to include recent developments and contributions of Chinese mathematicians, many of which have not been readily available to those of us who are unfamiliar with Chinese journals. Necessarily, there is some overlap with the book Combinatorial Matrix Theory. Some of the additional topics include: spectra of graphs, eulerian graph problems, Shannon capacity, generalized inverses of Boolean matrices, matrix rearrangements, and matrix completions. A topic to which many Chinese mathematicians have made substantial contributions is the combinatorial analysis of powers of nonnegative matrices, and a large chapter is devoted to this topic. This book should be a valuable resource for mathematicians working in the area of combinatorial matrix theory. Richard A. Brualdi University of Wisconsin - Madison 1 Linear Alg. Applies., vols. 162-4, 1992, 65-105 2Camhridge University Press, 1991.

A Combinatorial Approach to Matrix Theory and Its Applications

A Combinatorial Approach to Matrix Theory and Its Applications PDF Author: Richard A. Brualdi
Publisher: CRC Press
ISBN: 9781420082241
Category : Mathematics
Languages : en
Pages : 288

Get Book Here

Book Description
Unlike most elementary books on matrices, A Combinatorial Approach to Matrix Theory and Its Applications employs combinatorial and graph-theoretical tools to develop basic theorems of matrix theory, shedding new light on the subject by exploring the connections of these tools to matrices. After reviewing the basics of graph theory, elementary counting formulas, fields, and vector spaces, the book explains the algebra of matrices and uses the König digraph to carry out simple matrix operations. It then discusses matrix powers, provides a graph-theoretical definition of the determinant using the Coates digraph of a matrix, and presents a graph-theoretical interpretation of matrix inverses. The authors develop the elementary theory of solutions of systems of linear equations and show how to use the Coates digraph to solve a linear system. They also explore the eigenvalues, eigenvectors, and characteristic polynomial of a matrix; examine the important properties of nonnegative matrices that are part of the Perron–Frobenius theory; and study eigenvalue inclusion regions and sign-nonsingular matrices. The final chapter presents applications to electrical engineering, physics, and chemistry. Using combinatorial and graph-theoretical tools, this book enables a solid understanding of the fundamentals of matrix theory and its application to scientific areas.

Matrices and Graphs in Geometry

Matrices and Graphs in Geometry PDF Author: Miroslav Fiedler
Publisher: Cambridge University Press
ISBN: 0521461936
Category : Mathematics
Languages : en
Pages : 206

Get Book Here

Book Description
Demonstrates the close relationship between matrix theory and elementary Euclidean geometry, with emphasis on using simple graph-theoretical notions.

Matrices and Matroids for Systems Analysis

Matrices and Matroids for Systems Analysis PDF Author: Kazuo Murota
Publisher: Springer Science & Business Media
ISBN: 9783540660248
Category : Mathematics
Languages : en
Pages : 500

Get Book Here

Book Description
A matroid is an abstract mathematical structure that captures combinatorial properties of matrices. This book offers a unique introduction to matroid theory, emphasizing motivations from matrix theory and applications to systems analysis. This book serves also as a comprehensive presentation of the theory and application of mixed matrices, developed primarily by the present author in the 1990's. A mixed matrix is a convenient mathematical tool for systems analysis, compatible with the physical observation that "fixed constants" and "system parameters" are to be distinguished in the description of engineering systems. This book will be extremely useful to graduate students and researchers in engineering, mathematics and computer science. From the reviews: "...The book has been prepared very carefully, contains a lot of interesting results and is highly recommended for graduate and postgraduate students." András Recski, Mathematical Reviews Clippings 2000m:93006

Algebraic Graph Theory

Algebraic Graph Theory PDF Author: Ulrich Knauer
Publisher: Walter de Gruyter
ISBN: 311025509X
Category : Mathematics
Languages : en
Pages : 325

Get Book Here

Book Description
Graph models are extremely useful for almost all applications and applicators as they play an important role as structuring tools. They allow to model net structures – like roads, computers, telephones – instances of abstract data structures – like lists, stacks, trees – and functional or object oriented programming. In turn, graphs are models for mathematical objects, like categories and functors. This highly self-contained book about algebraic graph theory is written with a view to keep the lively and unconventional atmosphere of a spoken text to communicate the enthusiasm the author feels about this subject. The focus is on homomorphisms and endomorphisms, matrices and eigenvalues. It ends with a challenging chapter on the topological question of embeddability of Cayley graphs on surfaces.

A First Course in Graph Theory and Combinatorics

A First Course in Graph Theory and Combinatorics PDF Author: Sebastian M. Cioabă
Publisher: Springer Nature
ISBN: 9811909571
Category : Mathematics
Languages : en
Pages : 232

Get Book Here

Book Description
This book discusses the origin of graph theory from its humble beginnings in recreational mathematics to its modern setting or modeling communication networks, as is evidenced by the World Wide Web graph used by many Internet search engines. The second edition of the book includes recent developments in the theory of signed adjacency matrices involving the proof of sensitivity conjecture and the theory of Ramanujan graphs. In addition, the book discusses topics such as Pick’s theorem on areas of lattice polygons and Graham–Pollak’s work on addressing of graphs. The concept of graph is fundamental in mathematics and engineering, as it conveniently encodes diverse relations and facilitates combinatorial analysis of many theoretical and practical problems. The text is ideal for a one-semester course at the advanced undergraduate level or beginning graduate level.