Author: Miroslav Fiedler
Publisher: Cambridge University Press
ISBN: 0521461936
Category : Mathematics
Languages : en
Pages : 206
Book Description
Demonstrates the close relationship between matrix theory and elementary Euclidean geometry, with emphasis on using simple graph-theoretical notions.
Matrices and Graphs in Geometry
Graphs and Matrices
Author: Ravindra B. Bapat
Publisher: Springer
ISBN: 1447165691
Category : Mathematics
Languages : en
Pages : 197
Book Description
This new edition illustrates the power of linear algebra in the study of graphs. The emphasis on matrix techniques is greater than in other texts on algebraic graph theory. Important matrices associated with graphs (for example, incidence, adjacency and Laplacian matrices) are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration. The inclusion of exercises enables practical learning throughout the book. In the new edition, a new chapter is added on the line graph of a tree, while some results in Chapter 6 on Perron-Frobenius theory are reorganized. Whilst this book will be invaluable to students and researchers in graph theory and combinatorial matrix theory, it will also benefit readers in the sciences and engineering.
Publisher: Springer
ISBN: 1447165691
Category : Mathematics
Languages : en
Pages : 197
Book Description
This new edition illustrates the power of linear algebra in the study of graphs. The emphasis on matrix techniques is greater than in other texts on algebraic graph theory. Important matrices associated with graphs (for example, incidence, adjacency and Laplacian matrices) are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration. The inclusion of exercises enables practical learning throughout the book. In the new edition, a new chapter is added on the line graph of a tree, while some results in Chapter 6 on Perron-Frobenius theory are reorganized. Whilst this book will be invaluable to students and researchers in graph theory and combinatorial matrix theory, it will also benefit readers in the sciences and engineering.
Changing Shapes with Matrices
Author: Donald Cohen
Publisher: Donald Cohen
ISBN: 0962167436
Category : Matrices
Languages : en
Pages : 88
Book Description
Publisher: Donald Cohen
ISBN: 0962167436
Category : Matrices
Languages : en
Pages : 88
Book Description
Graph Theory and Sparse Matrix Computation
Author: Alan George
Publisher: Springer Science & Business Media
ISBN: 1461383692
Category : Mathematics
Languages : en
Pages : 254
Book Description
When reality is modeled by computation, matrices are often the connection between the continuous physical world and the finite algorithmic one. Usually, the more detailed the model, the bigger the matrix, the better the answer, however, efficiency demands that every possible advantage be exploited. The articles in this volume are based on recent research on sparse matrix computations. This volume looks at graph theory as it connects to linear algebra, parallel computing, data structures, geometry, and both numerical and discrete algorithms. The articles are grouped into three general categories: graph models of symmetric matrices and factorizations, graph models of algorithms on nonsymmetric matrices, and parallel sparse matrix algorithms. This book will be a resource for the researcher or advanced student of either graphs or sparse matrices; it will be useful to mathematicians, numerical analysts and theoretical computer scientists alike.
Publisher: Springer Science & Business Media
ISBN: 1461383692
Category : Mathematics
Languages : en
Pages : 254
Book Description
When reality is modeled by computation, matrices are often the connection between the continuous physical world and the finite algorithmic one. Usually, the more detailed the model, the bigger the matrix, the better the answer, however, efficiency demands that every possible advantage be exploited. The articles in this volume are based on recent research on sparse matrix computations. This volume looks at graph theory as it connects to linear algebra, parallel computing, data structures, geometry, and both numerical and discrete algorithms. The articles are grouped into three general categories: graph models of symmetric matrices and factorizations, graph models of algorithms on nonsymmetric matrices, and parallel sparse matrix algorithms. This book will be a resource for the researcher or advanced student of either graphs or sparse matrices; it will be useful to mathematicians, numerical analysts and theoretical computer scientists alike.
Spectral Graph Theory
Author: Fan R. K. Chung
Publisher: American Mathematical Soc.
ISBN: 0821803158
Category : Mathematics
Languages : en
Pages : 228
Book Description
This text discusses spectral graph theory.
Publisher: American Mathematical Soc.
ISBN: 0821803158
Category : Mathematics
Languages : en
Pages : 228
Book Description
This text discusses spectral graph theory.
Introduction to Random Graphs
Author: Alan Frieze
Publisher: Cambridge University Press
ISBN: 1107118506
Category : Mathematics
Languages : en
Pages : 483
Book Description
The text covers random graphs from the basic to the advanced, including numerous exercises and recommendations for further reading.
Publisher: Cambridge University Press
ISBN: 1107118506
Category : Mathematics
Languages : en
Pages : 483
Book Description
The text covers random graphs from the basic to the advanced, including numerous exercises and recommendations for further reading.
Introduction to Graph Theory
Author: Richard J. Trudeau
Publisher: Courier Corporation
ISBN: 0486318664
Category : Mathematics
Languages : en
Pages : 242
Book Description
Aimed at "the mathematically traumatized," this text offers nontechnical coverage of graph theory, with exercises. Discusses planar graphs, Euler's formula, Platonic graphs, coloring, the genus of a graph, Euler walks, Hamilton walks, more. 1976 edition.
Publisher: Courier Corporation
ISBN: 0486318664
Category : Mathematics
Languages : en
Pages : 242
Book Description
Aimed at "the mathematically traumatized," this text offers nontechnical coverage of graph theory, with exercises. Discusses planar graphs, Euler's formula, Platonic graphs, coloring, the genus of a graph, Euler walks, Hamilton walks, more. 1976 edition.
Geometry of Matrices
Author: Zhexian Wan
Publisher: World Scientific
ISBN: 9789810226381
Category : Mathematics
Languages : en
Pages : 396
Book Description
The present monograph is a state-of-art survey of the geometry of matrices whose study was initiated by L K Hua in the forties. The geometry of rectangular matrices, of alternate matrices, of symmetric matrices, and of hermitian matrices over a division ring or a field are studied in detail. The author's recent results on geometry of symmetric matrices and of hermitian matrices are included. A chapter on linear algebra over a division ring and one on affine and projective geometry over a division ring are also included. The book is clearly written so that graduate students and third or fourth year undergraduate students in mathematics can read it without difficulty.
Publisher: World Scientific
ISBN: 9789810226381
Category : Mathematics
Languages : en
Pages : 396
Book Description
The present monograph is a state-of-art survey of the geometry of matrices whose study was initiated by L K Hua in the forties. The geometry of rectangular matrices, of alternate matrices, of symmetric matrices, and of hermitian matrices over a division ring or a field are studied in detail. The author's recent results on geometry of symmetric matrices and of hermitian matrices are included. A chapter on linear algebra over a division ring and one on affine and projective geometry over a division ring are also included. The book is clearly written so that graduate students and third or fourth year undergraduate students in mathematics can read it without difficulty.
Convexity and Discrete Geometry Including Graph Theory
Author: Karim Adiprasito
Publisher: Springer
ISBN: 3319281860
Category : Mathematics
Languages : en
Pages : 277
Book Description
This volume presents easy-to-understand yet surprising properties obtained using topological, geometric and graph theoretic tools in the areas covered by the Geometry Conference that took place in Mulhouse, France from September 7–11, 2014 in honour of Tudor Zamfirescu on the occasion of his 70th anniversary. The contributions address subjects in convexity and discrete geometry, in distance geometry or with geometrical flavor in combinatorics, graph theory or non-linear analysis. Written by top experts, these papers highlight the close connections between these fields, as well as ties to other domains of geometry and their reciprocal influence. They offer an overview on recent developments in geometry and its border with discrete mathematics, and provide answers to several open questions. The volume addresses a large audience in mathematics, including researchers and graduate students interested in geometry and geometrical problems.
Publisher: Springer
ISBN: 3319281860
Category : Mathematics
Languages : en
Pages : 277
Book Description
This volume presents easy-to-understand yet surprising properties obtained using topological, geometric and graph theoretic tools in the areas covered by the Geometry Conference that took place in Mulhouse, France from September 7–11, 2014 in honour of Tudor Zamfirescu on the occasion of his 70th anniversary. The contributions address subjects in convexity and discrete geometry, in distance geometry or with geometrical flavor in combinatorics, graph theory or non-linear analysis. Written by top experts, these papers highlight the close connections between these fields, as well as ties to other domains of geometry and their reciprocal influence. They offer an overview on recent developments in geometry and its border with discrete mathematics, and provide answers to several open questions. The volume addresses a large audience in mathematics, including researchers and graduate students interested in geometry and geometrical problems.
Graph Algorithms in the Language of Linear Algebra
Author: Jeremy Kepner
Publisher: SIAM
ISBN: 9780898719918
Category : Mathematics
Languages : en
Pages : 388
Book Description
The current exponential growth in graph data has forced a shift to parallel computing for executing graph algorithms. Implementing parallel graph algorithms and achieving good parallel performance have proven difficult. This book addresses these challenges by exploiting the well-known duality between a canonical representation of graphs as abstract collections of vertices and edges and a sparse adjacency matrix representation. This linear algebraic approach is widely accessible to scientists and engineers who may not be formally trained in computer science. The authors show how to leverage existing parallel matrix computation techniques and the large amount of software infrastructure that exists for these computations to implement efficient and scalable parallel graph algorithms. The benefits of this approach are reduced algorithmic complexity, ease of implementation, and improved performance.
Publisher: SIAM
ISBN: 9780898719918
Category : Mathematics
Languages : en
Pages : 388
Book Description
The current exponential growth in graph data has forced a shift to parallel computing for executing graph algorithms. Implementing parallel graph algorithms and achieving good parallel performance have proven difficult. This book addresses these challenges by exploiting the well-known duality between a canonical representation of graphs as abstract collections of vertices and edges and a sparse adjacency matrix representation. This linear algebraic approach is widely accessible to scientists and engineers who may not be formally trained in computer science. The authors show how to leverage existing parallel matrix computation techniques and the large amount of software infrastructure that exists for these computations to implement efficient and scalable parallel graph algorithms. The benefits of this approach are reduced algorithmic complexity, ease of implementation, and improved performance.