Author: Allen Yu
Publisher: Packt Publishing Ltd
ISBN: 1788292138
Category : Computers
Languages : en
Pages : 328
Book Description
Unlock deeper insights into visualization in form of 2D and 3D graphs using Matplotlib 2.x About This Book Create and customize live graphs, by adding style, color, font to make appealing graphs. A complete guide with insightful use cases and examples to perform data visualizations with Matplotlib's extensive toolkits. Create timestamp data visualizations on 2D and 3D graphs in form of plots, histogram, bar charts, scatterplots and more. Who This Book Is For This book is for anyone interested in data visualization, to get insights from big data with Python and Matplotlib 2.x. With this book you will be able to extend your knowledge and learn how to use python code in order to visualize your data with Matplotlib. Basic knowledge of Python is expected. What You Will Learn Familiarize with the latest features in Matplotlib 2.x Create data visualizations on 2D and 3D charts in the form of bar charts, bubble charts, heat maps, histograms, scatter plots, stacked area charts, swarm plots and many more. Make clear and appealing figures for scientific publications. Create interactive charts and animation. Extend the functionalities of Matplotlib with third-party packages, such as Basemap, GeoPandas, Mplot3d, Pandas, Scikit-learn, and Seaborn. Design intuitive infographics for effective storytelling. In Detail Big data analytics are driving innovations in scientific research, digital marketing, policy-making and much more. Matplotlib offers simple but powerful plotting interface, versatile plot types and robust customization. Matplotlib 2.x By Example illustrates the methods and applications of various plot types through real world examples. It begins by giving readers the basic know-how on how to create and customize plots by Matplotlib. It further covers how to plot different types of economic data in the form of 2D and 3D graphs, which give insights from a deluge of data from public repositories, such as Quandl Finance. You will learn to visualize geographical data on maps and implement interactive charts. By the end of this book, you will become well versed with Matplotlib in your day-to-day work to perform advanced data visualization. This book will guide you to prepare high quality figures for manuscripts and presentations. You will learn to create intuitive info-graphics and reshaping your message crisply understandable. Style and approach Step by step comprehensive guide filled with real world examples.
Matplotlib 2.x By Example
Author: Allen Yu
Publisher: Packt Publishing Ltd
ISBN: 1788292138
Category : Computers
Languages : en
Pages : 328
Book Description
Unlock deeper insights into visualization in form of 2D and 3D graphs using Matplotlib 2.x About This Book Create and customize live graphs, by adding style, color, font to make appealing graphs. A complete guide with insightful use cases and examples to perform data visualizations with Matplotlib's extensive toolkits. Create timestamp data visualizations on 2D and 3D graphs in form of plots, histogram, bar charts, scatterplots and more. Who This Book Is For This book is for anyone interested in data visualization, to get insights from big data with Python and Matplotlib 2.x. With this book you will be able to extend your knowledge and learn how to use python code in order to visualize your data with Matplotlib. Basic knowledge of Python is expected. What You Will Learn Familiarize with the latest features in Matplotlib 2.x Create data visualizations on 2D and 3D charts in the form of bar charts, bubble charts, heat maps, histograms, scatter plots, stacked area charts, swarm plots and many more. Make clear and appealing figures for scientific publications. Create interactive charts and animation. Extend the functionalities of Matplotlib with third-party packages, such as Basemap, GeoPandas, Mplot3d, Pandas, Scikit-learn, and Seaborn. Design intuitive infographics for effective storytelling. In Detail Big data analytics are driving innovations in scientific research, digital marketing, policy-making and much more. Matplotlib offers simple but powerful plotting interface, versatile plot types and robust customization. Matplotlib 2.x By Example illustrates the methods and applications of various plot types through real world examples. It begins by giving readers the basic know-how on how to create and customize plots by Matplotlib. It further covers how to plot different types of economic data in the form of 2D and 3D graphs, which give insights from a deluge of data from public repositories, such as Quandl Finance. You will learn to visualize geographical data on maps and implement interactive charts. By the end of this book, you will become well versed with Matplotlib in your day-to-day work to perform advanced data visualization. This book will guide you to prepare high quality figures for manuscripts and presentations. You will learn to create intuitive info-graphics and reshaping your message crisply understandable. Style and approach Step by step comprehensive guide filled with real world examples.
Publisher: Packt Publishing Ltd
ISBN: 1788292138
Category : Computers
Languages : en
Pages : 328
Book Description
Unlock deeper insights into visualization in form of 2D and 3D graphs using Matplotlib 2.x About This Book Create and customize live graphs, by adding style, color, font to make appealing graphs. A complete guide with insightful use cases and examples to perform data visualizations with Matplotlib's extensive toolkits. Create timestamp data visualizations on 2D and 3D graphs in form of plots, histogram, bar charts, scatterplots and more. Who This Book Is For This book is for anyone interested in data visualization, to get insights from big data with Python and Matplotlib 2.x. With this book you will be able to extend your knowledge and learn how to use python code in order to visualize your data with Matplotlib. Basic knowledge of Python is expected. What You Will Learn Familiarize with the latest features in Matplotlib 2.x Create data visualizations on 2D and 3D charts in the form of bar charts, bubble charts, heat maps, histograms, scatter plots, stacked area charts, swarm plots and many more. Make clear and appealing figures for scientific publications. Create interactive charts and animation. Extend the functionalities of Matplotlib with third-party packages, such as Basemap, GeoPandas, Mplot3d, Pandas, Scikit-learn, and Seaborn. Design intuitive infographics for effective storytelling. In Detail Big data analytics are driving innovations in scientific research, digital marketing, policy-making and much more. Matplotlib offers simple but powerful plotting interface, versatile plot types and robust customization. Matplotlib 2.x By Example illustrates the methods and applications of various plot types through real world examples. It begins by giving readers the basic know-how on how to create and customize plots by Matplotlib. It further covers how to plot different types of economic data in the form of 2D and 3D graphs, which give insights from a deluge of data from public repositories, such as Quandl Finance. You will learn to visualize geographical data on maps and implement interactive charts. By the end of this book, you will become well versed with Matplotlib in your day-to-day work to perform advanced data visualization. This book will guide you to prepare high quality figures for manuscripts and presentations. You will learn to create intuitive info-graphics and reshaping your message crisply understandable. Style and approach Step by step comprehensive guide filled with real world examples.
Python Data Science Handbook
Author: Jake VanderPlas
Publisher: "O'Reilly Media, Inc."
ISBN: 1491912138
Category : Computers
Languages : en
Pages : 609
Book Description
For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
Publisher: "O'Reilly Media, Inc."
ISBN: 1491912138
Category : Computers
Languages : en
Pages : 609
Book Description
For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
A Primer on Scientific Programming with Python
Author: Hans Petter Langtangen
Publisher: Springer
ISBN: 3662498871
Category : Computers
Languages : en
Pages : 942
Book Description
The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012 “This fourth edition is a wonderful, inclusive textbook that covers pretty much everything one needs to know to go from zero to fairly sophisticated scientific programming in Python...” Joan Horvath, Computing Reviews, March 2015
Publisher: Springer
ISBN: 3662498871
Category : Computers
Languages : en
Pages : 942
Book Description
The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012 “This fourth edition is a wonderful, inclusive textbook that covers pretty much everything one needs to know to go from zero to fairly sophisticated scientific programming in Python...” Joan Horvath, Computing Reviews, March 2015
Python for Scientists
Author: John M. Stewart
Publisher: Cambridge University Press
ISBN: 1316641236
Category : Computers
Languages : en
Pages : 272
Book Description
Scientific Python is taught from scratch in this book via copious, downloadable, useful and adaptable code snippets. Everything the working scientist needs to know is covered, quickly providing researchers and research students with the skills to start using Python effectively.
Publisher: Cambridge University Press
ISBN: 1316641236
Category : Computers
Languages : en
Pages : 272
Book Description
Scientific Python is taught from scratch in this book via copious, downloadable, useful and adaptable code snippets. Everything the working scientist needs to know is covered, quickly providing researchers and research students with the skills to start using Python effectively.
Python and Matplotlib Essentials for Scientists and Engineers
Author: Matt A Wood
Publisher: Morgan & Claypool Publishers
ISBN: 1627056203
Category : Computers
Languages : en
Pages : 150
Book Description
This book provides an introduction to the core features of the Python programming language and Matplotlib plotting routings for scientists and engineers (or students of either discipline) who want to use PythonTM to analyse data, simulate physical processes, and render publication-quality plots. No previous programming experience is needed before reading the first page. Readers will learn the core features of the Python programming language in under a day. They will be able to immediately use Python to implement codes that solve their own problems and make beautiful plots and animations. Python code is extremely fast to prototype, allowing users to achieve results quickly and accurately. The examples within the book are available for download at http://pythonessentials.com. Python and Matplotlib Essentials for Scientists and Engineers is accessible for motivated high-school students, but will likely be most useful for undergraduate and graduate students as well as working professionals who have some background with the basic mathematical concepts. This book is intended for technical people who want to get things done.
Publisher: Morgan & Claypool Publishers
ISBN: 1627056203
Category : Computers
Languages : en
Pages : 150
Book Description
This book provides an introduction to the core features of the Python programming language and Matplotlib plotting routings for scientists and engineers (or students of either discipline) who want to use PythonTM to analyse data, simulate physical processes, and render publication-quality plots. No previous programming experience is needed before reading the first page. Readers will learn the core features of the Python programming language in under a day. They will be able to immediately use Python to implement codes that solve their own problems and make beautiful plots and animations. Python code is extremely fast to prototype, allowing users to achieve results quickly and accurately. The examples within the book are available for download at http://pythonessentials.com. Python and Matplotlib Essentials for Scientists and Engineers is accessible for motivated high-school students, but will likely be most useful for undergraduate and graduate students as well as working professionals who have some background with the basic mathematical concepts. This book is intended for technical people who want to get things done.
matplotlib Plotting Cookbook
Author: Alexandre Devert
Publisher: Packt Publishing Ltd
ISBN: 1849513279
Category : Computers
Languages : en
Pages : 326
Book Description
This book follows a cookbook style approach that puts orthogonal and non-redundant recipes in your hands. Rather than rehashing the user manual, the explanations expose the underlying logic behind Matplotlib. If you are an engineer or scientist who wants to create great visualizations with Python, rather than yet another specialized language, this is the book for you. While there are several very competent plotting packages, Matplotlib is just a Python module. Thus, if you know some Python already, you will feel at home from the first steps on. In case you are an application writer, you won't be left out since the integration of Matplolib is covered.
Publisher: Packt Publishing Ltd
ISBN: 1849513279
Category : Computers
Languages : en
Pages : 326
Book Description
This book follows a cookbook style approach that puts orthogonal and non-redundant recipes in your hands. Rather than rehashing the user manual, the explanations expose the underlying logic behind Matplotlib. If you are an engineer or scientist who wants to create great visualizations with Python, rather than yet another specialized language, this is the book for you. While there are several very competent plotting packages, Matplotlib is just a Python module. Thus, if you know some Python already, you will feel at home from the first steps on. In case you are an application writer, you won't be left out since the integration of Matplolib is covered.
Python and Matplotlib Essentials for Scientists and Engineers
Author: M A Wood
Publisher: Myprint
ISBN: 9781681748290
Category :
Languages : en
Pages : 152
Book Description
Publisher: Myprint
ISBN: 9781681748290
Category :
Languages : en
Pages : 152
Book Description
Python Data Analytics
Author: Fabio Nelli
Publisher: Apress
ISBN: 148423913X
Category : Computers
Languages : en
Pages : 576
Book Description
Explore the latest Python tools and techniques to help you tackle the world of data acquisition and analysis. You'll review scientific computing with NumPy, visualization with matplotlib, and machine learning with scikit-learn. This revision is fully updated with new content on social media data analysis, image analysis with OpenCV, and deep learning libraries. Each chapter includes multiple examples demonstrating how to work with each library. At its heart lies the coverage of pandas, for high-performance, easy-to-use data structures and tools for data manipulation Author Fabio Nelli expertly demonstrates using Python for data processing, management, and information retrieval. Later chapters apply what you've learned to handwriting recognition and extending graphical capabilities with the JavaScript D3 library. Whether you are dealing with sales data, investment data, medical data, web page usage, or other data sets, Python Data Analytics, Second Edition is an invaluable reference with its examples of storing, accessing, and analyzing data. What You'll LearnUnderstand the core concepts of data analysis and the Python ecosystem Go in depth with pandas for reading, writing, and processing data Use tools and techniques for data visualization and image analysis Examine popular deep learning libraries Keras, Theano,TensorFlow, and PyTorch Who This Book Is For Experienced Python developers who need to learn about Pythonic tools for data analysis
Publisher: Apress
ISBN: 148423913X
Category : Computers
Languages : en
Pages : 576
Book Description
Explore the latest Python tools and techniques to help you tackle the world of data acquisition and analysis. You'll review scientific computing with NumPy, visualization with matplotlib, and machine learning with scikit-learn. This revision is fully updated with new content on social media data analysis, image analysis with OpenCV, and deep learning libraries. Each chapter includes multiple examples demonstrating how to work with each library. At its heart lies the coverage of pandas, for high-performance, easy-to-use data structures and tools for data manipulation Author Fabio Nelli expertly demonstrates using Python for data processing, management, and information retrieval. Later chapters apply what you've learned to handwriting recognition and extending graphical capabilities with the JavaScript D3 library. Whether you are dealing with sales data, investment data, medical data, web page usage, or other data sets, Python Data Analytics, Second Edition is an invaluable reference with its examples of storing, accessing, and analyzing data. What You'll LearnUnderstand the core concepts of data analysis and the Python ecosystem Go in depth with pandas for reading, writing, and processing data Use tools and techniques for data visualization and image analysis Examine popular deep learning libraries Keras, Theano,TensorFlow, and PyTorch Who This Book Is For Experienced Python developers who need to learn about Pythonic tools for data analysis
Effective Computation in Physics
Author: Anthony Scopatz
Publisher: "O'Reilly Media, Inc."
ISBN: 1491901586
Category : Science
Languages : en
Pages : 567
Book Description
More physicists today are taking on the role of software developer as part of their research, but software development isnâ??t always easy or obvious, even for physicists. This practical book teaches essential software development skills to help you automate and accomplish nearly any aspect of research in a physics-based field. Written by two PhDs in nuclear engineering, this book includes practical examples drawn from a working knowledge of physics concepts. Youâ??ll learn how to use the Python programming language to perform everything from collecting and analyzing data to building software and publishing your results. In four parts, this book includes: Getting Started: Jump into Python, the command line, data containers, functions, flow control and logic, and classes and objects Getting It Done: Learn about regular expressions, analysis and visualization, NumPy, storing data in files and HDF5, important data structures in physics, computing in parallel, and deploying software Getting It Right: Build pipelines and software, learn to use local and remote version control, and debug and test your code Getting It Out There: Document your code, process and publish your findings, and collaborate efficiently; dive into software licenses, ownership, and copyright procedures
Publisher: "O'Reilly Media, Inc."
ISBN: 1491901586
Category : Science
Languages : en
Pages : 567
Book Description
More physicists today are taking on the role of software developer as part of their research, but software development isnâ??t always easy or obvious, even for physicists. This practical book teaches essential software development skills to help you automate and accomplish nearly any aspect of research in a physics-based field. Written by two PhDs in nuclear engineering, this book includes practical examples drawn from a working knowledge of physics concepts. Youâ??ll learn how to use the Python programming language to perform everything from collecting and analyzing data to building software and publishing your results. In four parts, this book includes: Getting Started: Jump into Python, the command line, data containers, functions, flow control and logic, and classes and objects Getting It Done: Learn about regular expressions, analysis and visualization, NumPy, storing data in files and HDF5, important data structures in physics, computing in parallel, and deploying software Getting It Right: Build pipelines and software, learn to use local and remote version control, and debug and test your code Getting It Out There: Document your code, process and publish your findings, and collaborate efficiently; dive into software licenses, ownership, and copyright procedures
Finite Difference Computing with Exponential Decay Models
Author: Hans Petter Langtangen
Publisher: Springer
ISBN: 3319294393
Category : Computers
Languages : en
Pages : 210
Book Description
This text provides a very simple, initial introduction to the complete scientific computing pipeline: models, discretization, algorithms, programming, verification, and visualization. The pedagogical strategy is to use one case study – an ordinary differential equation describing exponential decay processes – to illustrate fundamental concepts in mathematics and computer science. The book is easy to read and only requires a command of one-variable calculus and some very basic knowledge about computer programming. Contrary to similar texts on numerical methods and programming, this text has a much stronger focus on implementation and teaches testing and software engineering in particular.
Publisher: Springer
ISBN: 3319294393
Category : Computers
Languages : en
Pages : 210
Book Description
This text provides a very simple, initial introduction to the complete scientific computing pipeline: models, discretization, algorithms, programming, verification, and visualization. The pedagogical strategy is to use one case study – an ordinary differential equation describing exponential decay processes – to illustrate fundamental concepts in mathematics and computer science. The book is easy to read and only requires a command of one-variable calculus and some very basic knowledge about computer programming. Contrary to similar texts on numerical methods and programming, this text has a much stronger focus on implementation and teaches testing and software engineering in particular.