Light Propagation Through Biological Tissue and Other Diffusive Media

Light Propagation Through Biological Tissue and Other Diffusive Media PDF Author: Fabrizio Martelli
Publisher: Society of Photo Optical
ISBN: 9780819476586
Category : Science
Languages : en
Pages : 274

Get Book Here

Book Description
Book includes a CD-ROM. This book provides foundational information on modeling light propagation through diffusive media, with special emphasis on biological tissue. A summary of the theoretical background on light propagation through diffusive media is provided with the aid of easy-to-use software designed to calculate the solutions of the diffusion equation. The book also provides: The basic theory of photon transport with the analytical solutions of the diffusion equation for several geometries Detailed coverage of the radiative transfer equation and the diffusion equation The theories and the formulae based on the diffusion equation that have been widely used for biomedical applications The general concepts and the physical quantities necessary to describe light propagation through absorbing and scattering media A description of the software provided on the CD-ROM, along with the accuracy of the presented solutions. Although the theoretical and computational tools provided with this book and CD-ROM have their primary use in the field of biomedical optics, there are many other applications in which they can be used, including agricultural products, forest products, food products, plastic materials, pharmaceutical products, and many others.

Light Propagation Through Biological Tissue and Other Diffusive Media

Light Propagation Through Biological Tissue and Other Diffusive Media PDF Author: Fabrizio Martelli
Publisher: Society of Photo Optical
ISBN: 9780819476586
Category : Science
Languages : en
Pages : 274

Get Book Here

Book Description
Book includes a CD-ROM. This book provides foundational information on modeling light propagation through diffusive media, with special emphasis on biological tissue. A summary of the theoretical background on light propagation through diffusive media is provided with the aid of easy-to-use software designed to calculate the solutions of the diffusion equation. The book also provides: The basic theory of photon transport with the analytical solutions of the diffusion equation for several geometries Detailed coverage of the radiative transfer equation and the diffusion equation The theories and the formulae based on the diffusion equation that have been widely used for biomedical applications The general concepts and the physical quantities necessary to describe light propagation through absorbing and scattering media A description of the software provided on the CD-ROM, along with the accuracy of the presented solutions. Although the theoretical and computational tools provided with this book and CD-ROM have their primary use in the field of biomedical optics, there are many other applications in which they can be used, including agricultural products, forest products, food products, plastic materials, pharmaceutical products, and many others.

Laser Interaction with Heterogeneous Biological Tissue

Laser Interaction with Heterogeneous Biological Tissue PDF Author: Kirill Kulikov
Publisher: Springer
ISBN: 3319941143
Category : Science
Languages : en
Pages : 197

Get Book Here

Book Description
This book introduces readers to the principles of laser interaction with biological cells and tissues with varying degrees of organization. In addition to considering the problems of biomedical cell diagnostics, and modeling the scattering of laser irradiation of blood cells for biological structures (dermis, epidermis, vascular plexus), it presents an analytic theory based on solving the wave equation for the electromagnetic field. It discusses a range of mathematical modeling topics, including optical characterization of biological tissue with large-scale and small-scale inhomogeneities in the layers; heating blood vessels using laser irradiation on the outer surface of the skin; and thermo-chemical denaturation of biological structures based on the example of human skin. In this second edition, a new electrodynamic model of the interaction of laser radiation with blood cells is presented for the structure of cells and the in vitro prediction of optical properties. The approach developed makes it possible to determine changes in cell size as well as modifications in their internal structures, such as transformation and polymorphism nucleus scattering, which is of interest for cytological studies. The new model is subsequently used to calculate the size distribution function of irregular-shape particles with a variety of forms and structures, which allows a cytological analysis of the observed deviations from normal cells.

Light Propagation Through Biological Tissue and Other Diffusive Media : Theory, Solutions, and Validations

Light Propagation Through Biological Tissue and Other Diffusive Media : Theory, Solutions, and Validations PDF Author: Fabrizio Martelli
Publisher:
ISBN: 9781510650350
Category : Electronic books
Languages : en
Pages : 0

Get Book Here

Book Description
This second edition is completely revised and improved and contains eight new chapters and six new appendixes. In addition to the theoretical background on light propagation through diffusive media, this update also provides new didactical material, including: • A comprehensive statistical approach to the photon penetration depth in diffusive media • An introduction to anomalous transport • An anisotropic transport approach within the framework of diffusion theory • An introduction to the invariance properties of radiative transfer in non-absorbing media • A heuristic explanation of ballistic photon propagation • An expanded description of core Monte Carlo simulation methods • A series of new analytical solutions of the diffusion equation for new geometries • Some original solutions in the time domain of the diffusion equation in the presence of Raman and fluorescence interactions • New MATLAB® codes of the presented solutions • A revised and enlarged set of numerical Monte Carlo results for verification of the presented solutions • An augmented bibliography covering the field of tissue optics. Although the theoretical and computational tools provided in this book have their primary use in the field of biomedical optics, there are many other applications in which they can be used, including, for example, analysis of agricultural products, study of forest canopies or clouds, and quality control of industrial food, plastic materials, or pharmaceutical products, among many others.

Modeling and Numerical Simulation of Light Propagation Through Biological Tissue with Implanted Structures

Modeling and Numerical Simulation of Light Propagation Through Biological Tissue with Implanted Structures PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This dissertation proposes several numerical techniques for simulating laser pulse propagation through biological tissue with implants for sensing applications. The purpose of these implants is to enhance and condition the optical signals for better detection of the received signal. This work contributes to the development of methods for sensing and characterization of tissue properties and measuring concentrations of substances in blood or tissue fluid, thus making it possible to monitor these concentrations and detect anomalies. The research was carried out in three major stages. In stage 1, a technique for simulating laser pulse propagation through tissue, which addresses some of the drawbacks of existing methods, was developed. The outcome of this stage was an efficient algorithm for solving the transient photon transport equation (PTE), which governs light propagation through tissue. The proposed algorithm was first implemented for the one-dimensional case and later extended for the two- and three-dimensional cases. This algorithm was also extended to inhomogeneous media. The one-dimensional PTE is an integro-differential equation of four variables: distance, local zenith angle, local azimuthal angle and time. First, the original PTE was mapped to a moving reference frame co-moving with the incident pulse. This transformation eliminated the partial derivative term with respect to time in the original equation. The dependence on the local azimuthal angle was then removed using the discrete ordinates method, which resulted in a set of coupled three-variable integro-differential equations. A Laguerre expansion was then used to represent the time dependency of this reduced PTE. With the Laguerre expansion, any arbitrary input pulse shape can be represented using a few polynomials, and also the causality is preserved. This step resulted in a two-variable integro-differential equation for each Laguerre coefficient. The dependence on the local zenith angle was removed.

Improved Mathematical and Computational Tools for Modeling Photon Propagation in Tissue

Improved Mathematical and Computational Tools for Modeling Photon Propagation in Tissue PDF Author: Katherine Weaver Calabro
Publisher:
ISBN:
Category :
Languages : en
Pages : 544

Get Book Here

Book Description
Abstract: Light interacts with biological tissue through two predominant mechanisms: scattering and absorption, which are sensitive to the size and density of cellular organelles, and to biochemical composition (ex. hemoglobin), respectively. During the progression of disease, tissues undergo a predictable set of changes in cell morphology and vascularization, which directly affect their scattering and absorption properties. Hence, quantification of these optical property differences can be used to identify the physiological biomarkers of disease with interest often focused on cancer. Diffuse reflectance spectroscopy is a diagnostic tool, wherein broadband visible light is transmitted through a fiber optic probe into a turbid medium, and after propagating through the sample, a fraction of the light is collected at the surface as reflectance. The measured reflectance spectrum can be analyzed with appropriate mathematical models to extract the optical properties of the tissue, and from these, a set of physiological properties. A number of models have been developed for this purpose using a variety of approaches -- from diffusion theory, to computational simulations, and empirical observations. However, these models are generally limited to narrow ranges of tissue and probe geometries. In this thesis, reflectance models were developed for a much wider range of measurement parameters, and influences such as the scattering phase function and probe design were investigated rigorously for the first time. The results provide a comprehensive understanding of the factors that influence reflectance, with novel insights that, in some cases, challenge current assumptions in the field. An improved Monte Carlo simulation program, designed to run on a graphics processing unit (GPU), was built to simulate the data used in the development of the reflectance models. Rigorous error analysis was performed to identify how inaccuracies in modeling assumptions can be expected to affect the accuracy of extracted optical property values from experimentally-acquired reflectance spectra. From this analysis, probe geometries that offer the best robustness against error in estimation of physiological properties from tissue, are presented. Finally, several in vivo studies demonstrating the use of reflectance spectroscopy for both research and clinical applications are presented.

Laser Interaction with Biological Material

Laser Interaction with Biological Material PDF Author: Kirill Kulikov
Publisher: Springer Science & Business Media
ISBN: 331901739X
Category : Science
Languages : en
Pages : 155

Get Book Here

Book Description
This book covers the principles of laser interaction with biological cells and tissues of varying degrees of organization. The problems of biomedical diagnostics are considered. Scattering of laser irradiation of blood cells is modeled for biological structures (dermis, epidermis, vascular plexus). An analytic theory is provided which is based on solving the wave equation for the electromagnetic field. It allows the accurate analysis of interference effects arising from the partial superposition of scattered waves. Treated topics of mathematical modeling are: optical characterization of biological tissue with large-scale and small-scale inhomogeneities in the layers, heating blood vessel under laser irradiation incident on the outer surface of the skin and thermo-chemical denaturation of biological structures at the example of human skin.

Laser Filamentation

Laser Filamentation PDF Author: Andre D. Bandrauk
Publisher: Springer
ISBN: 3319230840
Category : Science
Languages : en
Pages : 223

Get Book Here

Book Description
This book is focused on the nonlinear theoretical and mathematical problems associated with ultrafast intense laser pulse propagation in gases and in particular, in air. With the aim of understanding the physics of filamentation in gases, solids, the atmosphere, and even biological tissue, specialists in nonlinear optics and filamentation from both physics and mathematics attempt to rigorously derive and analyze relevant non-perturbative models. Modern laser technology allows the generation of ultrafast (few cycle) laser pulses, with intensities exceeding the internal electric field in atoms and molecules (E=5x109 V/cm or intensity I = 3.5 x 1016 Watts/cm2 ). The interaction of such pulses with atoms and molecules leads to new, highly nonlinear nonperturbative regimes, where new physical phenomena, such as High Harmonic Generation (HHG), occur, and from which the shortest (attosecond - the natural time scale of the electron) pulses have been created. One of the major experimental discoveries in this nonlinear nonperturbative regime, Laser Pulse Filamentation, was observed by Mourou and Braun in 1995, as the propagation of pulses over large distances with narrow and intense cones. This observation has led to intensive investigation in physics and applied mathematics of new effects such as self-transformation of these pulses into white light, intensity clamping, and multiple filamentation, as well as to potential applications to wave guide writing, atmospheric remote sensing, lightning guiding, and military long-range weapons. The increasing power of high performance computers and the mathematical modelling and simulation of photonic systems has enabled many new areas of research. With contributions by theorists and mathematicians, supplemented by active experimentalists who are experts in the field of nonlinear laser molecule interaction and propagation, Laser Filamentation sheds new light on scientific and industrial applications of modern lasers.

Light Propagation Through Biological Tissue and Other Diffusive Media: Theory, Solutions, and Validations

Light Propagation Through Biological Tissue and Other Diffusive Media: Theory, Solutions, and Validations PDF Author: Fabrizio Martelli
Publisher:
ISBN: 9781510650343
Category : Light
Languages : en
Pages :

Get Book Here

Book Description


Mathematical Modelling in Real Life Problems

Mathematical Modelling in Real Life Problems PDF Author: Ewald Lindner
Publisher: Springer Nature
ISBN: 3030503887
Category : Mathematics
Languages : en
Pages : 165

Get Book Here

Book Description
This book is intended to be a useful contribution for the modern teaching of applied mathematics, educating Industrial Mathematicians that will meet the growing demand for such experts. It covers many applications where mathematics play a fundamental role, from biology, telecommunications, medicine, physics, finance and industry. It is presented in such a way that can be useful in Modelation, Simulation and Optimization courses, targeting master and PhD students. Its content is based on many editions from the successful series of Modelling Weeks organized by the European Consortium of Mathematics in Industry (ECMI). Each chapter addresses a particular problem, and is written in a didactic way, providing the description of the problem, the particular way of approaching it and the proposed solution, along with the results obtained.

Mathematical Modelling

Mathematical Modelling PDF Author: Seppo Pohjolainen
Publisher: Springer
ISBN: 3319278363
Category : Mathematics
Languages : en
Pages : 247

Get Book Here

Book Description
This book provides a thorough introduction to the challenge of applying mathematics in real-world scenarios. Modelling tasks rarely involve well-defined categories, and they often require multidisciplinary input from mathematics, physics, computer sciences, or engineering. In keeping with this spirit of modelling, the book includes a wealth of cross-references between the chapters and frequently points to the real-world context. The book combines classical approaches to modelling with novel areas such as soft computing methods, inverse problems, and model uncertainty. Attention is also paid to the interaction between models, data and the use of mathematical software. The reader will find a broad selection of theoretical tools for practicing industrial mathematics, including the analysis of continuum models, probabilistic and discrete phenomena, and asymptotic and sensitivity analysis.