Author: Nathalie Sinclair
Publisher: Springer Science & Business Media
ISBN: 0387381457
Category : Mathematics
Languages : en
Pages : 299
Book Description
This collection of essays explores the ancient affinity between the mathematical and the aesthetic, focusing on fundamental connections between these two modes of reasoning and communicating. From historical, philosophical and psychological perspectives, with particular attention to certain mathematical areas such as geometry and analysis, the authors examine ways in which the aesthetic is ever-present in mathematical thinking and contributes to the growth and value of mathematical knowledge.
Mathematics and the Aesthetic
Author: Nathalie Sinclair
Publisher: Springer Science & Business Media
ISBN: 0387381457
Category : Mathematics
Languages : en
Pages : 299
Book Description
This collection of essays explores the ancient affinity between the mathematical and the aesthetic, focusing on fundamental connections between these two modes of reasoning and communicating. From historical, philosophical and psychological perspectives, with particular attention to certain mathematical areas such as geometry and analysis, the authors examine ways in which the aesthetic is ever-present in mathematical thinking and contributes to the growth and value of mathematical knowledge.
Publisher: Springer Science & Business Media
ISBN: 0387381457
Category : Mathematics
Languages : en
Pages : 299
Book Description
This collection of essays explores the ancient affinity between the mathematical and the aesthetic, focusing on fundamental connections between these two modes of reasoning and communicating. From historical, philosophical and psychological perspectives, with particular attention to certain mathematical areas such as geometry and analysis, the authors examine ways in which the aesthetic is ever-present in mathematical thinking and contributes to the growth and value of mathematical knowledge.
Explaining Beauty in Mathematics: An Aesthetic Theory of Mathematics
Author: Ulianov Montano
Publisher: Springer Science & Business Media
ISBN: 3319034529
Category : Philosophy
Languages : en
Pages : 224
Book Description
This book develops a naturalistic aesthetic theory that accounts for aesthetic phenomena in mathematics in the same terms as it accounts for more traditional aesthetic phenomena. Building upon a view advanced by James McAllister, the assertion is that beauty in science does not confine itself to anecdotes or personal idiosyncrasies, but rather that it had played a role in shaping the development of science. Mathematicians often evaluate certain pieces of mathematics using words like beautiful, elegant, or even ugly. Such evaluations are prevalent, however, rigorous investigation of them, of mathematical beauty, is much less common. The volume integrates the basic elements of aesthetics, as it has been developed over the last 200 years, with recent findings in neuropsychology as well as a good knowledge of mathematics. The volume begins with a discussion of the reasons to interpret mathematical beauty in a literal or non-literal fashion, which also serves to survey historical and contemporary approaches to mathematical beauty. The author concludes that literal approaches are much more coherent and fruitful, however, much is yet to be done. In this respect two chapters are devoted to the revision and improvement of McAllister’s theory of the role of beauty in science. These antecedents are used as a foundation to formulate a naturalistic aesthetic theory. The central idea of the theory is that aesthetic phenomena should be seen as constituting a complex dynamical system which the author calls the aesthetic as process theory. The theory comprises explications of three central topics: aesthetic experience (in mathematics), aesthetic value and aesthetic judgment. The theory is applied in the final part of the volume and is used to account for the three most salient and often used aesthetic terms often used in mathematics: beautiful, elegant and ugly. This application of the theory serves to illustrate the theory in action, but also to further discuss and develop some details and to showcase the theory’s explanatory capabilities.
Publisher: Springer Science & Business Media
ISBN: 3319034529
Category : Philosophy
Languages : en
Pages : 224
Book Description
This book develops a naturalistic aesthetic theory that accounts for aesthetic phenomena in mathematics in the same terms as it accounts for more traditional aesthetic phenomena. Building upon a view advanced by James McAllister, the assertion is that beauty in science does not confine itself to anecdotes or personal idiosyncrasies, but rather that it had played a role in shaping the development of science. Mathematicians often evaluate certain pieces of mathematics using words like beautiful, elegant, or even ugly. Such evaluations are prevalent, however, rigorous investigation of them, of mathematical beauty, is much less common. The volume integrates the basic elements of aesthetics, as it has been developed over the last 200 years, with recent findings in neuropsychology as well as a good knowledge of mathematics. The volume begins with a discussion of the reasons to interpret mathematical beauty in a literal or non-literal fashion, which also serves to survey historical and contemporary approaches to mathematical beauty. The author concludes that literal approaches are much more coherent and fruitful, however, much is yet to be done. In this respect two chapters are devoted to the revision and improvement of McAllister’s theory of the role of beauty in science. These antecedents are used as a foundation to formulate a naturalistic aesthetic theory. The central idea of the theory is that aesthetic phenomena should be seen as constituting a complex dynamical system which the author calls the aesthetic as process theory. The theory comprises explications of three central topics: aesthetic experience (in mathematics), aesthetic value and aesthetic judgment. The theory is applied in the final part of the volume and is used to account for the three most salient and often used aesthetic terms often used in mathematics: beautiful, elegant and ugly. This application of the theory serves to illustrate the theory in action, but also to further discuss and develop some details and to showcase the theory’s explanatory capabilities.
Mathematics and Beauty
Author: Nathalie Sinclair
Publisher:
ISBN:
Category : Education
Languages : en
Pages : 212
Book Description
In this innovative book, Nathalie Sinclair makes a compelling case for the inclusion of the aesthetic in the teaching and learning of mathematics. Using a provocative set of philosophical, psychological, mathematical, technological, and educational insights, she illuminates how the materials and approaches we use in the mathematics classroom can be enriched for the benefit of all learners. While ranging in scope from the young learner to the professional mathematician, there is a particular focus on middle school, where negative feelings toward mathematics frequently begin. Offering specific recommendations to help teachers evoke and nurture their students’ aesthetic abilities, this book: Features powerful episodes from the classroom that show students in the act of developing a sense of mathematical aesthetics. Analyzes how aesthetic sensibilities to qualities such as connectedness, fruitfulness, apparent simplicity, visual appeal, and surprise are fundamental to mathematical inquiry. Includes examples of mathematical inquiry in computer-based learning environments, revealing some of the roles they play in supporting students’ aesthetic inclinations.
Publisher:
ISBN:
Category : Education
Languages : en
Pages : 212
Book Description
In this innovative book, Nathalie Sinclair makes a compelling case for the inclusion of the aesthetic in the teaching and learning of mathematics. Using a provocative set of philosophical, psychological, mathematical, technological, and educational insights, she illuminates how the materials and approaches we use in the mathematics classroom can be enriched for the benefit of all learners. While ranging in scope from the young learner to the professional mathematician, there is a particular focus on middle school, where negative feelings toward mathematics frequently begin. Offering specific recommendations to help teachers evoke and nurture their students’ aesthetic abilities, this book: Features powerful episodes from the classroom that show students in the act of developing a sense of mathematical aesthetics. Analyzes how aesthetic sensibilities to qualities such as connectedness, fruitfulness, apparent simplicity, visual appeal, and surprise are fundamental to mathematical inquiry. Includes examples of mathematical inquiry in computer-based learning environments, revealing some of the roles they play in supporting students’ aesthetic inclinations.
Amazing and Aesthetic Aspects of Analysis
Author: Paul Loya
Publisher: Springer
ISBN: 1493967959
Category : Mathematics
Languages : en
Pages : 730
Book Description
Lively prose and imaginative exercises draw the reader into this unique introductory real analysis textbook. Motivating the fundamental ideas and theorems that underpin real analysis with historical remarks and well-chosen quotes, the author shares his enthusiasm for the subject throughout. A student reading this book is invited not only to acquire proficiency in the fundamentals of analysis, but to develop an appreciation for abstraction and the language of its expression. In studying this book, students will encounter: the interconnections between set theory and mathematical statements and proofs; the fundamental axioms of the natural, integer, and real numbers; rigorous ε-N and ε-δ definitions; convergence and properties of an infinite series, product, or continued fraction; series, product, and continued fraction formulæ for the various elementary functions and constants. Instructors will appreciate this engaging perspective, showcasing the beauty of these fundamental results.
Publisher: Springer
ISBN: 1493967959
Category : Mathematics
Languages : en
Pages : 730
Book Description
Lively prose and imaginative exercises draw the reader into this unique introductory real analysis textbook. Motivating the fundamental ideas and theorems that underpin real analysis with historical remarks and well-chosen quotes, the author shares his enthusiasm for the subject throughout. A student reading this book is invited not only to acquire proficiency in the fundamentals of analysis, but to develop an appreciation for abstraction and the language of its expression. In studying this book, students will encounter: the interconnections between set theory and mathematical statements and proofs; the fundamental axioms of the natural, integer, and real numbers; rigorous ε-N and ε-δ definitions; convergence and properties of an infinite series, product, or continued fraction; series, product, and continued fraction formulæ for the various elementary functions and constants. Instructors will appreciate this engaging perspective, showcasing the beauty of these fundamental results.
Math Art
Author: Stephen Ornes
Publisher: Sterling New York
ISBN: 9781454930440
Category : MATHEMATICS
Languages : en
Pages : 0
Book Description
The worlds of visual art and mathematics beautifully unite in this spectacular volume by award-winning writer Stephen Ornes. He explores the growing sensation of math art, presenting such pieces as a colorful crocheted representation of non-Euclidian geometry that looks like sea coral and a 65-ton, 28-foot-tall bronze sculpture covered in a space-filling curve. We learn the artist's story for every work, plus the mathematical concepts and equations behind the art.
Publisher: Sterling New York
ISBN: 9781454930440
Category : MATHEMATICS
Languages : en
Pages : 0
Book Description
The worlds of visual art and mathematics beautifully unite in this spectacular volume by award-winning writer Stephen Ornes. He explores the growing sensation of math art, presenting such pieces as a colorful crocheted representation of non-Euclidian geometry that looks like sea coral and a 65-ton, 28-foot-tall bronze sculpture covered in a space-filling curve. We learn the artist's story for every work, plus the mathematical concepts and equations behind the art.
Mathematics and Art
Author: Lynn Gamwell
Publisher: Princeton University Press
ISBN: 0691165289
Category : Art
Languages : en
Pages : 576
Book Description
This is a cultural history of mathematics and art, from antiquity to the present. Mathematicians and artists have long been on a quest to understand the physical world they see before them and the abstract objects they know by thought alone. Taking readers on a tour of the practice of mathematics and the philosophical ideas that drive the discipline, Lynn Gamwell points out the important ways mathematical concepts have been expressed by artists. Sumptuous illustrations of artworks and cogent math diagrams are featured in Gamwell's comprehensive exploration. Gamwell begins by describing mathematics from antiquity to the Enlightenment, including Greek, Islamic, and Asian mathematics. Then focusing on modern culture, Gamwell traces mathematicians' search for the foundations of their science, such as David Hilbert's conception of mathematics as an arrangement of meaning-free signs, as well as artists' search for the essence of their craft, such as Aleksandr Rodchenko's monochrome paintings. She shows that self-reflection is inherent to the practice of both modern mathematics and art, and that this introspection points to a deep resonance between the two fields: Kurt Gödel posed questions about the nature of mathematics in the language of mathematics and Jasper Johns asked "What is art?" in the vocabulary of art. Throughout, Gamwell describes the personalities and cultural environments of a multitude of mathematicians and artists, from Gottlob Frege and Benoît Mandelbrot to Max Bill and Xu Bing. Mathematics and Art demonstrates how mathematical ideas are embodied in the visual arts and will enlighten all who are interested in the complex intellectual pursuits, personalities, and cultural settings that connect these vast disciplines.
Publisher: Princeton University Press
ISBN: 0691165289
Category : Art
Languages : en
Pages : 576
Book Description
This is a cultural history of mathematics and art, from antiquity to the present. Mathematicians and artists have long been on a quest to understand the physical world they see before them and the abstract objects they know by thought alone. Taking readers on a tour of the practice of mathematics and the philosophical ideas that drive the discipline, Lynn Gamwell points out the important ways mathematical concepts have been expressed by artists. Sumptuous illustrations of artworks and cogent math diagrams are featured in Gamwell's comprehensive exploration. Gamwell begins by describing mathematics from antiquity to the Enlightenment, including Greek, Islamic, and Asian mathematics. Then focusing on modern culture, Gamwell traces mathematicians' search for the foundations of their science, such as David Hilbert's conception of mathematics as an arrangement of meaning-free signs, as well as artists' search for the essence of their craft, such as Aleksandr Rodchenko's monochrome paintings. She shows that self-reflection is inherent to the practice of both modern mathematics and art, and that this introspection points to a deep resonance between the two fields: Kurt Gödel posed questions about the nature of mathematics in the language of mathematics and Jasper Johns asked "What is art?" in the vocabulary of art. Throughout, Gamwell describes the personalities and cultural environments of a multitude of mathematicians and artists, from Gottlob Frege and Benoît Mandelbrot to Max Bill and Xu Bing. Mathematics and Art demonstrates how mathematical ideas are embodied in the visual arts and will enlighten all who are interested in the complex intellectual pursuits, personalities, and cultural settings that connect these vast disciplines.
Mathematics in Twentieth-Century Literature & Art
Author: Robert Tubbs
Publisher: Johns Hopkins University Press+ORM
ISBN: 1421414023
Category : Mathematics
Languages : en
Pages : 276
Book Description
The author of What Is a Number? examines the relationship between mathematics and art and literature of the 20th century. During the twentieth century, many artists and writers turned to abstract mathematical ideas to help them realize their aesthetic ambitions. Man Ray, Marcel Duchamp, and, perhaps most famously, Piet Mondrian used principles of mathematics in their work. Was it coincidence, or were these artists following their instincts, which were ruled by mathematical underpinnings, such as optimal solutions for filling a space? If math exists within visual art, can it be found within literary pursuits? In short, just what is the relationship between mathematics and the creative arts? In this exploration of mathematical ideas in art and literature, Robert Tubbs argues that the links are much stronger than previously imagined and exceed both coincidence and commonality of purpose. Not only does he argue that mathematical ideas guided the aesthetic visions of many twentieth-century artists and writers, Tubbs further asserts that artists and writers used math in their creative processes even though they seemed to have no affinity for mathematical thinking. In the end, Tubbs makes the case that art can be better appreciated when the math that inspired it is better understood. An insightful tour of the great masters of the last century and an argument that challenges long-held paradigms, this book will appeal to mathematicians, humanists, and artists, as well as instructors teaching the connections among math, literature, and art. “Though the content of Tubbs’s book is challenging, it is also accessible and should interest many on both sides of the perceived divide between mathematics and the arts.” —Choice
Publisher: Johns Hopkins University Press+ORM
ISBN: 1421414023
Category : Mathematics
Languages : en
Pages : 276
Book Description
The author of What Is a Number? examines the relationship between mathematics and art and literature of the 20th century. During the twentieth century, many artists and writers turned to abstract mathematical ideas to help them realize their aesthetic ambitions. Man Ray, Marcel Duchamp, and, perhaps most famously, Piet Mondrian used principles of mathematics in their work. Was it coincidence, or were these artists following their instincts, which were ruled by mathematical underpinnings, such as optimal solutions for filling a space? If math exists within visual art, can it be found within literary pursuits? In short, just what is the relationship between mathematics and the creative arts? In this exploration of mathematical ideas in art and literature, Robert Tubbs argues that the links are much stronger than previously imagined and exceed both coincidence and commonality of purpose. Not only does he argue that mathematical ideas guided the aesthetic visions of many twentieth-century artists and writers, Tubbs further asserts that artists and writers used math in their creative processes even though they seemed to have no affinity for mathematical thinking. In the end, Tubbs makes the case that art can be better appreciated when the math that inspired it is better understood. An insightful tour of the great masters of the last century and an argument that challenges long-held paradigms, this book will appeal to mathematicians, humanists, and artists, as well as instructors teaching the connections among math, literature, and art. “Though the content of Tubbs’s book is challenging, it is also accessible and should interest many on both sides of the perceived divide between mathematics and the arts.” —Choice
The Weil Conjectures
Author: Karen Olsson
Publisher: Macmillan + ORM
ISBN: 0374719632
Category : Biography & Autobiography
Languages : en
Pages : 167
Book Description
A New York Times Editors' Pick and Paris Review Staff Pick "A wonderful book." --Patti Smith "I was riveted. Olsson is evocative on curiosity as an appetite of the mind, on the pleasure of glutting oneself on knowledge." --Parul Sehgal, The New York Times An eloquent blend of memoir and biography exploring the Weil siblings, math, and creative inspiration Karen Olsson’s stirring and unusual third book, The Weil Conjectures, tells the story of the brilliant Weil siblings—Simone, a philosopher, mystic, and social activist, and André, an influential mathematician—while also recalling the years Olsson spent studying math. As she delves into the lives of these two singular French thinkers, she grapples with their intellectual obsessions and rekindles one of her own. For Olsson, as a math major in college and a writer now, it’s the odd detours that lead to discovery, to moments of insight. Thus The Weil Conjectures—an elegant blend of biography and memoir and a meditation on the creative life. Personal, revealing, and approachable, The Weil Conjectures eloquently explores math as it relates to intellectual history, and shows how sometimes the most inexplicable pursuits turn out to be the most rewarding.
Publisher: Macmillan + ORM
ISBN: 0374719632
Category : Biography & Autobiography
Languages : en
Pages : 167
Book Description
A New York Times Editors' Pick and Paris Review Staff Pick "A wonderful book." --Patti Smith "I was riveted. Olsson is evocative on curiosity as an appetite of the mind, on the pleasure of glutting oneself on knowledge." --Parul Sehgal, The New York Times An eloquent blend of memoir and biography exploring the Weil siblings, math, and creative inspiration Karen Olsson’s stirring and unusual third book, The Weil Conjectures, tells the story of the brilliant Weil siblings—Simone, a philosopher, mystic, and social activist, and André, an influential mathematician—while also recalling the years Olsson spent studying math. As she delves into the lives of these two singular French thinkers, she grapples with their intellectual obsessions and rekindles one of her own. For Olsson, as a math major in college and a writer now, it’s the odd detours that lead to discovery, to moments of insight. Thus The Weil Conjectures—an elegant blend of biography and memoir and a meditation on the creative life. Personal, revealing, and approachable, The Weil Conjectures eloquently explores math as it relates to intellectual history, and shows how sometimes the most inexplicable pursuits turn out to be the most rewarding.
Aesthetics of Interdisciplinarity: Art and Mathematics
Author: Kristóf Fenyvesi
Publisher: Birkhäuser
ISBN: 3319572598
Category : Mathematics
Languages : en
Pages : 297
Book Description
This anthology fosters an interdisciplinary dialogue between the mathematical and artistic approaches in the field where mathematical and artistic thinking and practice merge. The articles included highlight the most significant current ideas and phenomena, providing a multifaceted and extensive snapshot of the field and indicating how interdisciplinary approaches are applied in the research of various cultural and artistic phenomena. The discussions are related, for example, to the fields of aesthetics, anthropology, art history, art theory, artistic practice, cultural studies, ethno-mathematics, geometry, mathematics, new physics, philosophy, physics, study of visual illusions, and symmetry studies. Further, the book introduces a new concept: the interdisciplinary aesthetics of mathematical art, which the editors use to explain the manifold nature of the aesthetic principles intertwined in these discussions.
Publisher: Birkhäuser
ISBN: 3319572598
Category : Mathematics
Languages : en
Pages : 297
Book Description
This anthology fosters an interdisciplinary dialogue between the mathematical and artistic approaches in the field where mathematical and artistic thinking and practice merge. The articles included highlight the most significant current ideas and phenomena, providing a multifaceted and extensive snapshot of the field and indicating how interdisciplinary approaches are applied in the research of various cultural and artistic phenomena. The discussions are related, for example, to the fields of aesthetics, anthropology, art history, art theory, artistic practice, cultural studies, ethno-mathematics, geometry, mathematics, new physics, philosophy, physics, study of visual illusions, and symmetry studies. Further, the book introduces a new concept: the interdisciplinary aesthetics of mathematical art, which the editors use to explain the manifold nature of the aesthetic principles intertwined in these discussions.
Aesthetic Computing
Author: Paul A. Fishwick
Publisher: MIT Press
ISBN: 0262562375
Category : Aesthetics
Languages : en
Pages : 477
Book Description
The application of the theory and practice of art to computer science: how aesthetics and art can play a role in computing disciplines.
Publisher: MIT Press
ISBN: 0262562375
Category : Aesthetics
Languages : en
Pages : 477
Book Description
The application of the theory and practice of art to computer science: how aesthetics and art can play a role in computing disciplines.