Mathematics and Plausible Reasoning

Mathematics and Plausible Reasoning PDF Author: George Polya
Publisher: Lushena Books
ISBN: 9781639235667
Category : Computers
Languages : en
Pages : 0

Get Book Here

Book Description
This two volume classic comprises two titles: "Patterns of Plausible Inference" and "Induction and Analogy in Mathematics". This is a guide to the practical art of plausible reasoning, particularly in mathematics, but also in every field of human activity. Using mathematics as the example par excellence, Polya shows how even the most rigorous deductive discipline is heavily dependent on techniques of guessing, inductive reasoning, and reasoning by analogy. In solving a problem, the answer must be guessed at before a proof can be given, and guesses are usually made from a knowledge of facts, experience, and hunches. The truly creative mathematician must be a good guesser first and a good prover afterward; many important theorems have been guessed but no proved until much later. In the same way, solutions to problems can be guessed, and a god guesser is much more likely to find a correct solution. This work might have been called "How to Become a Good Guesser."-From the Dust Jacket.

Mathematics and Plausible Reasoning

Mathematics and Plausible Reasoning PDF Author: George Polya
Publisher: Lushena Books
ISBN: 9781639235667
Category : Computers
Languages : en
Pages : 0

Get Book Here

Book Description
This two volume classic comprises two titles: "Patterns of Plausible Inference" and "Induction and Analogy in Mathematics". This is a guide to the practical art of plausible reasoning, particularly in mathematics, but also in every field of human activity. Using mathematics as the example par excellence, Polya shows how even the most rigorous deductive discipline is heavily dependent on techniques of guessing, inductive reasoning, and reasoning by analogy. In solving a problem, the answer must be guessed at before a proof can be given, and guesses are usually made from a knowledge of facts, experience, and hunches. The truly creative mathematician must be a good guesser first and a good prover afterward; many important theorems have been guessed but no proved until much later. In the same way, solutions to problems can be guessed, and a god guesser is much more likely to find a correct solution. This work might have been called "How to Become a Good Guesser."-From the Dust Jacket.

Patterns of Plausible Inference

Patterns of Plausible Inference PDF Author: George Pólya
Publisher:
ISBN: 9780691080062
Category : Mathematics
Languages : en
Pages : 200

Get Book Here

Book Description
A guide to the practical art of plausible reasoning, this book has relevance in every field of intellectual activity. Professor Polya, a world-famous mathematician from Stanford University, uses mathematics to show how hunches and guesses play an important part in even the most rigorously deductive science. He explains how solutions to problems can be guessed at; good guessing is often more important than rigorous deduction in finding correct solutions. Vol. II, on Patterns of Plausible Inference, attempts to develop a logic of plausibility. What makes some evidence stronger and some weaker? How does one seek evidence that will make a suspected truth more probable? These questions involve philosophy and psychology as well as mathematics.

Street-Fighting Mathematics

Street-Fighting Mathematics PDF Author: Sanjoy Mahajan
Publisher: MIT Press
ISBN: 0262265591
Category : Education
Languages : en
Pages : 152

Get Book Here

Book Description
An antidote to mathematical rigor mortis, teaching how to guess answers without needing a proof or an exact calculation. In problem solving, as in street fighting, rules are for fools: do whatever works—don't just stand there! Yet we often fear an unjustified leap even though it may land us on a correct result. Traditional mathematics teaching is largely about solving exactly stated problems exactly, yet life often hands us partly defined problems needing only moderately accurate solutions. This engaging book is an antidote to the rigor mortis brought on by too much mathematical rigor, teaching us how to guess answers without needing a proof or an exact calculation. In Street-Fighting Mathematics, Sanjoy Mahajan builds, sharpens, and demonstrates tools for educated guessing and down-and-dirty, opportunistic problem solving across diverse fields of knowledge—from mathematics to management. Mahajan describes six tools: dimensional analysis, easy cases, lumping, picture proofs, successive approximation, and reasoning by analogy. Illustrating each tool with numerous examples, he carefully separates the tool—the general principle—from the particular application so that the reader can most easily grasp the tool itself to use on problems of particular interest. Street-Fighting Mathematics grew out of a short course taught by the author at MIT for students ranging from first-year undergraduates to graduate students ready for careers in physics, mathematics, management, electrical engineering, computer science, and biology. They benefited from an approach that avoided rigor and taught them how to use mathematics to solve real problems. Street-Fighting Mathematics will appear in print and online under a Creative Commons Noncommercial Share Alike license.

Mathematical Discovery on Understanding, Learning, and Teaching Problem Solving

Mathematical Discovery on Understanding, Learning, and Teaching Problem Solving PDF Author: George Pólya
Publisher:
ISBN: 9784871878319
Category : Mathematics
Languages : en
Pages : 236

Get Book Here

Book Description
George Polya was a Hungarian mathematician. Born in Budapest on 13 December 1887, his original name was Polya Gyorg. He wrote perhaps the most famous book of mathematics ever written, namely "How to Solve It." However, "How to Solve It" is not strictly speaking a math book. It is a book about how to solve problems of any kind, of which math is just one type of problem. The same techniques could in principle be used to solve any problem one encounters in life (such as how to choose the best wife ). Therefore, Polya wrote the current volume to explain how the techniques set forth in "How to Solve It" can be applied to specific areas such as geometry.

Mathematics and Plausible Reasoning

Mathematics and Plausible Reasoning PDF Author: George Pólya
Publisher:
ISBN:
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 208

Get Book Here

Book Description


The Stanford Mathematics Problem Book

The Stanford Mathematics Problem Book PDF Author: George Polya
Publisher: Courier Corporation
ISBN: 048631832X
Category : Mathematics
Languages : en
Pages : 82

Get Book Here

Book Description
Based on Stanford University's well-known competitive exam, this excellent mathematics workbook offers students at both high school and college levels a complete set of problems, hints, and solutions. 1974 edition.

Experimentation in Mathematics

Experimentation in Mathematics PDF Author: Jonathan M. Borwein
Publisher: CRC Press
ISBN: 1439864195
Category : Mathematics
Languages : en
Pages : 372

Get Book Here

Book Description
New mathematical insights and rigorous results are often gained through extensive experimentation using numerical examples or graphical images and analyzing them. Today computer experiments are an integral part of doing mathematics. This allows for a more systematic approach to conducting and replicating experiments. The authors address the role of

Mathematics by Experiment

Mathematics by Experiment PDF Author: Jonathan Borwein
Publisher: CRC Press
ISBN: 1439865361
Category : Mathematics
Languages : en
Pages : 384

Get Book Here

Book Description
This revised and updated second edition maintains the content and spirit of the first edition and includes a new chapter, "Recent Experiences", that provides examples of experimental mathematics that have come to light since the publication of the first edition in 2003. For more examples and insights, Experimentation in Mathematics: Computational P

An Invitation to Applied Category Theory

An Invitation to Applied Category Theory PDF Author: Brendan Fong
Publisher: Cambridge University Press
ISBN: 1108582249
Category : Mathematics
Languages : en
Pages : 351

Get Book Here

Book Description
Category theory is unmatched in its ability to organize and layer abstractions and to find commonalities between structures of all sorts. No longer the exclusive preserve of pure mathematicians, it is now proving itself to be a powerful tool in science, informatics, and industry. By facilitating communication between communities and building rigorous bridges between disparate worlds, applied category theory has the potential to be a major organizing force. This book offers a self-contained tour of applied category theory. Each chapter follows a single thread motivated by a real-world application and discussed with category-theoretic tools. We see data migration as an adjoint functor, electrical circuits in terms of monoidal categories and operads, and collaborative design via enriched profunctors. All the relevant category theory, from simple to sophisticated, is introduced in an accessible way with many examples and exercises, making this an ideal guide even for those without experience of university-level mathematics.

Mathematics for Machine Learning

Mathematics for Machine Learning PDF Author: Marc Peter Deisenroth
Publisher: Cambridge University Press
ISBN: 1108569323
Category : Computers
Languages : en
Pages : 392

Get Book Here

Book Description
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.