Discrete Mathematics and Its Applications

Discrete Mathematics and Its Applications PDF Author: Kenneth H. Rosen
Publisher:
ISBN: 9780071244749
Category : Computer science
Languages : en
Pages : 109

Get Book Here

Book Description
The companion Web site -- To the student -- The foundations : logic, sets, and functions -- The fundamentals : algorithms, the integers, and matrices -- Mathematical reasoning -- Counting -- Advanced counting techniques -- Relations -- Graphs -- Trees -- Boolean algebra -- Modeling computation

Discrete Mathematics and Its Applications

Discrete Mathematics and Its Applications PDF Author: Kenneth H. Rosen
Publisher:
ISBN: 9780071244749
Category : Computer science
Languages : en
Pages : 109

Get Book Here

Book Description
The companion Web site -- To the student -- The foundations : logic, sets, and functions -- The fundamentals : algorithms, the integers, and matrices -- Mathematical reasoning -- Counting -- Advanced counting techniques -- Relations -- Graphs -- Trees -- Boolean algebra -- Modeling computation

Combinatorial Mathematics and Its Applications

Combinatorial Mathematics and Its Applications PDF Author: Raj Chandra Bose
Publisher:
ISBN:
Category : Combinatorial analysis
Languages : en
Pages : 632

Get Book Here

Book Description


Relational Mathematics

Relational Mathematics PDF Author: Gunther Schmidt
Publisher: Cambridge University Press
ISBN: 0521762685
Category : Computers
Languages : en
Pages : 582

Get Book Here

Book Description
Relational mathematics is to operations research and informatics what numerical mathematics is to engineering: it is intended to help modelling, reasoning, and computing. Its applications are therefore diverse, ranging from psychology, linguistics, decision aid, and ranking to machine learning and spatial reasoning. Although many developments have been made in recent years, they have rarely been shared amongst this broad community of researchers. This comprehensive 2010 overview begins with an easy introduction to the topic, assuming a minimum of prerequisites; but it is nevertheless theoretically sound and up to date. It is suitable for applied scientists, explaining all the necessary mathematics from scratch using a multitude of visualised examples, via matrices and graphs. It ends with tangible results on the research level. The author illustrates the theory and demonstrates practical tasks in operations research, social sciences and the humanities.

Matroid Applications

Matroid Applications PDF Author: Neil White
Publisher: Cambridge University Press
ISBN: 0521381657
Category : Mathematics
Languages : en
Pages : 377

Get Book Here

Book Description
This volume, the third in a sequence that began with The Theory of Matroids and Combinatorial Geometries, concentrates on the applications of matroid theory to a variety of topics from engineering (rigidity and scene analysis), combinatorics (graphs, lattices, codes and designs), topology and operations research (the greedy algorithm).

Discrete Mathematics with Applications

Discrete Mathematics with Applications PDF Author: Thomas Koshy
Publisher: Elsevier
ISBN: 0080477348
Category : Mathematics
Languages : en
Pages : 1079

Get Book Here

Book Description
This approachable text studies discrete objects and the relationsips that bind them. It helps students understand and apply the power of discrete math to digital computer systems and other modern applications. It provides excellent preparation for courses in linear algebra, number theory, and modern/abstract algebra and for computer science courses in data structures, algorithms, programming languages, compilers, databases, and computation.* Covers all recommended topics in a self-contained, comprehensive, and understandable format for students and new professionals * Emphasizes problem-solving techniques, pattern recognition, conjecturing, induction, applications of varying nature, proof techniques, algorithm development and correctness, and numeric computations* Weaves numerous applications into the text* Helps students learn by doing with a wealth of examples and exercises: - 560 examples worked out in detail - More than 3,700 exercises - More than 150 computer assignments - More than 600 writing projects* Includes chapter summaries of important vocabulary, formulas, and properties, plus the chapter review exercises* Features interesting anecdotes and biographies of 60 mathematicians and computer scientists* Instructor's Manual available for adopters* Student Solutions Manual available separately for purchase (ISBN: 0124211828)

Topologies on Closed and Closed Convex Sets

Topologies on Closed and Closed Convex Sets PDF Author: Gerald Beer
Publisher: Springer Science & Business Media
ISBN: 9780792325314
Category : Mathematics
Languages : en
Pages : 360

Get Book Here

Book Description
This monograph provides an introduction to the theory of topologies defined on the closed subsets of a metric space, and on the closed convex subsets of a normed linear space as well. A unifying theme is the relationship between topology and set convergence on the one hand, and set functionals on the other. The text includes for the first time anywhere an exposition of three topologies that over the past ten years have become fundamental tools in optimization, one-sided analysis, convex analysis, and the theory of multifunctions: the Wijsman topology, the Attouch--Wets topology, and the slice topology. Particular attention is given to topologies on lower semicontinuous functions, especially lower semicontinuous convex functions, as associated with their epigraphs. The interplay between convex duality and topology is carefully considered and a chapter on set-valued functions is included. The book contains over 350 exercises and is suitable as a graduate text. This book is of interest to those working in general topology, set-valued analysis, geometric functional analysis, optimization, convex analysis and mathematical economics.

A Combinatorial Approach to Matrix Theory and Its Applications

A Combinatorial Approach to Matrix Theory and Its Applications PDF Author: Richard A. Brualdi
Publisher: CRC Press
ISBN: 9781420082241
Category : Mathematics
Languages : en
Pages : 288

Get Book Here

Book Description
Unlike most elementary books on matrices, A Combinatorial Approach to Matrix Theory and Its Applications employs combinatorial and graph-theoretical tools to develop basic theorems of matrix theory, shedding new light on the subject by exploring the connections of these tools to matrices. After reviewing the basics of graph theory, elementary counting formulas, fields, and vector spaces, the book explains the algebra of matrices and uses the König digraph to carry out simple matrix operations. It then discusses matrix powers, provides a graph-theoretical definition of the determinant using the Coates digraph of a matrix, and presents a graph-theoretical interpretation of matrix inverses. The authors develop the elementary theory of solutions of systems of linear equations and show how to use the Coates digraph to solve a linear system. They also explore the eigenvalues, eigenvectors, and characteristic polynomial of a matrix; examine the important properties of nonnegative matrices that are part of the Perron–Frobenius theory; and study eigenvalue inclusion regions and sign-nonsingular matrices. The final chapter presents applications to electrical engineering, physics, and chemistry. Using combinatorial and graph-theoretical tools, this book enables a solid understanding of the fundamentals of matrix theory and its application to scientific areas.

Towards Higher Categories

Towards Higher Categories PDF Author: John C. Baez
Publisher: Springer Science & Business Media
ISBN: 1441915362
Category : Algebra
Languages : en
Pages : 292

Get Book Here

Book Description
The purpose of this book is to give background for those who would like to delve into some higher category theory. It is not a primer on higher category theory itself. It begins with a paper by John Baez and Michael Shulman which explores informally, by analogy and direct connection, how cohomology and other tools of algebraic topology are seen through the eyes of n-category theory. The idea is to give some of the motivations behind this subject. There are then two survey articles, by Julie Bergner and Simona Paoli, about (infinity,1) categories and about the algebraic modelling of homotopy n-types. These are areas that are particularly well understood, and where a fully integrated theory exists. The main focus of the book is on the richness to be found in the theory of bicategories, which gives the essential starting point towards the understanding of higher categorical structures. An article by Stephen Lack gives a thorough, but informal, guide to this theory. A paper by Larry Breen on the theory of gerbes shows how such categorical structures appear in differential geometry. This book is dedicated to Max Kelly, the founder of the Australian school of category theory, and an historical paper by Ross Street describes its development.

Discrete Mathematics with Applications, Metric Edition

Discrete Mathematics with Applications, Metric Edition PDF Author: Susanna Epp
Publisher:
ISBN: 9780357114087
Category :
Languages : en
Pages : 984

Get Book Here

Book Description
DISCRETE MATHEMATICS WITH APPLICATIONS, 5th Edition, Metric Edition explains complex, abstract concepts with clarity and precision and provides a strong foundation for computer science and upper-level mathematics courses of the computer age. Author Susanna Epp presents not only the major themes of discrete mathematics, but also the reasoning that underlies mathematical thought. Students develop the ability to think abstractly as they study the ideas of logic and proof. While learning about such concepts as logic circuits and computer addition, algorithm analysis, recursive thinking, computability, automata, cryptography and combinatorics, students discover that the ideas of discrete mathematics underlie and are essential to today's science and technology.

Mathematics and Its Applications

Mathematics and Its Applications PDF Author: Jairo José da Silva
Publisher: Springer
ISBN: 3319630733
Category : Philosophy
Languages : en
Pages : 274

Get Book Here

Book Description
This monograph offers a fresh perspective on the applicability of mathematics in science. It explores what mathematics must be so that its applications to the empirical world do not constitute a mystery. In the process, readers are presented with a new version of mathematical structuralism. The author details a philosophy of mathematics in which the problem of its applicability, particularly in physics, in all its forms can be explained and justified. Chapters cover: mathematics as a formal science, mathematical ontology: what does it mean to exist, mathematical structures: what are they and how do we know them, how different layers of mathematical structuring relate to each other and to perceptual structures, and how to use mathematics to find out how the world is. The book simultaneously develops along two lines, both inspired and enlightened by Edmund Husserl’s phenomenological philosophy. One line leads to the establishment of a particular version of mathematical structuralism, free of “naturalist” and empiricist bias. The other leads to a logical-epistemological explanation and justification of the applicability of mathematics carried out within a unique structuralist perspective. This second line points to the “unreasonable” effectiveness of mathematics in physics as a means of representation, a tool, and a source of not always logically justified but useful and effective heuristic strategies.