Author: Christine Bernardi
Publisher:
ISBN: 9781611978117
Category : Finite element method
Languages : en
Pages : 0
Book Description
"Provides a thorough theoretical study of finite element method for solving the incompressible Navier-Stokes equations"--
Mathematics and Finite Element Discretizations of Incompressible Navier-Stokes Flows
Author: Christine Bernardi
Publisher:
ISBN: 9781611978117
Category : Finite element method
Languages : en
Pages : 0
Book Description
"Provides a thorough theoretical study of finite element method for solving the incompressible Navier-Stokes equations"--
Publisher:
ISBN: 9781611978117
Category : Finite element method
Languages : en
Pages : 0
Book Description
"Provides a thorough theoretical study of finite element method for solving the incompressible Navier-Stokes equations"--
Mathematics and Finite Element Discretizations of Incompressible Navier–Stokes Flows
Author: Christine Bernardi
Publisher: SIAM
ISBN: 1611978122
Category : Science
Languages : en
Pages : 859
Book Description
Navier–Stokes equations are one of the most impactful techniques for modeling physical flow phenomena. The coupling of velocity and pressure, along with the nonlinearity, is a challenge for the mathematical and numerical analysis of these equations. This self-contained book provides a thorough theoretical study of finite element methods for solving incompressible Navier–Stokes equations, which model flow of incompressible Newtonian fluids and are used in many practical applications. It focuses on efficient and widely used finite element methods that are well adapted to large-scale simulations. In this revised and expanded edition of Girault and Raviart’s 1986 textbook Finite Element Methods for Navier–Stokes Equations (Springer-Verlag), readers will find rigorous proof of stability and convergence, analysis of practical algorithms, and a stand-alone chapter on finite element methods that is applicable to a large range of PDEs. In addition to the basic theoretical analysis, this book covers up-to-date finite element discretizations of incompressible Navier–Stokes equations; a variety of numerical algorithms used in the computer implementation of Navier–Stokes equations and numerical experiments; standard and nonstandard boundary conditions and their numerical discretizations via the finite element methods; and conforming and nonconforming finite elements, as well as their stability and instability. This book is intended for applied mathematicians and graduate students interested in learning about the theory of various finite element methods for solving the Navier–Stokes equations. Engineers seeking reliable algorithms for computational fluid dynamics will also find the book of interest.
Publisher: SIAM
ISBN: 1611978122
Category : Science
Languages : en
Pages : 859
Book Description
Navier–Stokes equations are one of the most impactful techniques for modeling physical flow phenomena. The coupling of velocity and pressure, along with the nonlinearity, is a challenge for the mathematical and numerical analysis of these equations. This self-contained book provides a thorough theoretical study of finite element methods for solving incompressible Navier–Stokes equations, which model flow of incompressible Newtonian fluids and are used in many practical applications. It focuses on efficient and widely used finite element methods that are well adapted to large-scale simulations. In this revised and expanded edition of Girault and Raviart’s 1986 textbook Finite Element Methods for Navier–Stokes Equations (Springer-Verlag), readers will find rigorous proof of stability and convergence, analysis of practical algorithms, and a stand-alone chapter on finite element methods that is applicable to a large range of PDEs. In addition to the basic theoretical analysis, this book covers up-to-date finite element discretizations of incompressible Navier–Stokes equations; a variety of numerical algorithms used in the computer implementation of Navier–Stokes equations and numerical experiments; standard and nonstandard boundary conditions and their numerical discretizations via the finite element methods; and conforming and nonconforming finite elements, as well as their stability and instability. This book is intended for applied mathematicians and graduate students interested in learning about the theory of various finite element methods for solving the Navier–Stokes equations. Engineers seeking reliable algorithms for computational fluid dynamics will also find the book of interest.
Fundamental Directions in Mathematical Fluid Mechanics
Author: Giovanni P. Galdi
Publisher: Birkhäuser
ISBN: 3034884249
Category : Mathematics
Languages : en
Pages : 300
Book Description
This volume consists of six articles, each treating an important topic in the theory ofthe Navier-Stokes equations, at the research level. Some of the articles are mainly expository, putting together, in a unified setting, the results of recent research papers and conference lectures. Several other articles are devoted mainly to new results, but present them within a wider context and with a fuller exposition than is usual for journals. The plan to publish these articles as a book began with the lecture notes for the short courses of G.P. Galdi and R. Rannacher, given at the beginning of the International Workshop on Theoretical and Numerical Fluid Dynamics, held in Vancouver, Canada, July 27 to August 2, 1996. A renewed energy for this project came with the founding of the Journal of Mathematical Fluid Mechanics, by G.P. Galdi, J. Heywood, and R. Rannacher, in 1998. At that time it was decided that this volume should be published in association with the journal, and expanded to include articles by J. Heywood and W. Nagata, J. Heywood and M. Padula, and P. Gervasio, A. Quarteroni and F. Saleri. The original lecture notes were also revised and updated.
Publisher: Birkhäuser
ISBN: 3034884249
Category : Mathematics
Languages : en
Pages : 300
Book Description
This volume consists of six articles, each treating an important topic in the theory ofthe Navier-Stokes equations, at the research level. Some of the articles are mainly expository, putting together, in a unified setting, the results of recent research papers and conference lectures. Several other articles are devoted mainly to new results, but present them within a wider context and with a fuller exposition than is usual for journals. The plan to publish these articles as a book began with the lecture notes for the short courses of G.P. Galdi and R. Rannacher, given at the beginning of the International Workshop on Theoretical and Numerical Fluid Dynamics, held in Vancouver, Canada, July 27 to August 2, 1996. A renewed energy for this project came with the founding of the Journal of Mathematical Fluid Mechanics, by G.P. Galdi, J. Heywood, and R. Rannacher, in 1998. At that time it was decided that this volume should be published in association with the journal, and expanded to include articles by J. Heywood and W. Nagata, J. Heywood and M. Padula, and P. Gervasio, A. Quarteroni and F. Saleri. The original lecture notes were also revised and updated.
Finite Element Methods for Incompressible Flow Problems
Author: Volker John
Publisher: Springer
ISBN: 3319457500
Category : Mathematics
Languages : en
Pages : 816
Book Description
This book explores finite element methods for incompressible flow problems: Stokes equations, stationary Navier-Stokes equations and time-dependent Navier-Stokes equations. It focuses on numerical analysis, but also discusses the practical use of these methods and includes numerical illustrations. It also provides a comprehensive overview of analytical results for turbulence models. The proofs are presented step by step, allowing readers to more easily understand the analytical techniques.
Publisher: Springer
ISBN: 3319457500
Category : Mathematics
Languages : en
Pages : 816
Book Description
This book explores finite element methods for incompressible flow problems: Stokes equations, stationary Navier-Stokes equations and time-dependent Navier-Stokes equations. It focuses on numerical analysis, but also discusses the practical use of these methods and includes numerical illustrations. It also provides a comprehensive overview of analytical results for turbulence models. The proofs are presented step by step, allowing readers to more easily understand the analytical techniques.
Finite Element Methods for Navier-Stokes Equations
Author: Vivette Girault
Publisher: Springer Science & Business Media
ISBN: 3642616232
Category : Mathematics
Languages : en
Pages : 386
Book Description
The material covered by this book has been taught by one of the authors in a post-graduate course on Numerical Analysis at the University Pierre et Marie Curie of Paris. It is an extended version of a previous text (cf. Girault & Raviart [32J) published in 1979 by Springer-Verlag in its series: Lecture Notes in Mathematics. In the last decade, many engineers and mathematicians have concentrated their efforts on the finite element solution of the Navier-Stokes equations for incompressible flows. The purpose of this book is to provide a fairly comprehen sive treatment of the most recent developments in that field. To stay within reasonable bounds, we have restricted ourselves to the case of stationary prob lems although the time-dependent problems are of fundamental importance. This topic is currently evolving rapidly and we feel that it deserves to be covered by another specialized monograph. We have tried, to the best of our ability, to present a fairly exhaustive treatment of the finite element methods for inner flows. On the other hand however, we have entirely left out the subject of exterior problems which involve radically different techniques, both from a theoretical and from a practical point of view. Also, we have neither discussed the implemen tation of the finite element methods presented by this book, nor given any explicit numerical result. This field is extensively covered by Peyret & Taylor [64J and Thomasset [82].
Publisher: Springer Science & Business Media
ISBN: 3642616232
Category : Mathematics
Languages : en
Pages : 386
Book Description
The material covered by this book has been taught by one of the authors in a post-graduate course on Numerical Analysis at the University Pierre et Marie Curie of Paris. It is an extended version of a previous text (cf. Girault & Raviart [32J) published in 1979 by Springer-Verlag in its series: Lecture Notes in Mathematics. In the last decade, many engineers and mathematicians have concentrated their efforts on the finite element solution of the Navier-Stokes equations for incompressible flows. The purpose of this book is to provide a fairly comprehen sive treatment of the most recent developments in that field. To stay within reasonable bounds, we have restricted ourselves to the case of stationary prob lems although the time-dependent problems are of fundamental importance. This topic is currently evolving rapidly and we feel that it deserves to be covered by another specialized monograph. We have tried, to the best of our ability, to present a fairly exhaustive treatment of the finite element methods for inner flows. On the other hand however, we have entirely left out the subject of exterior problems which involve radically different techniques, both from a theoretical and from a practical point of view. Also, we have neither discussed the implemen tation of the finite element methods presented by this book, nor given any explicit numerical result. This field is extensively covered by Peyret & Taylor [64J and Thomasset [82].
Navier-Stokes Equations
Author: Roger Temam
Publisher: American Mathematical Soc.
ISBN: 0821827375
Category : Mathematics
Languages : en
Pages : 426
Book Description
Originally published in 1977, the book is devoted to the theory and numerical analysis of the Navier-Stokes equations for viscous incompressible fluid. On the theoretical side, results related to the existence, the uniqueness, and, in some cases, the regularity of solutions are presented. On the numerical side, various approaches to the approximation of Navier-Stokes problems by discretization are considered, such as the finite dereference method, the finite element method, and the fractional steps method. The problems of stability and convergence for numerical methods are treated as completely as possible. The new material in the present book (as compared to the preceding 1984 edition) is an appendix reproducing a survey article written in 1998. This appendix touches upon a few aspects not addressed in the earlier editions, in particular a short derivation of the Navier-Stokes equations from the basic conservation principles in continuum mechanics, further historical perspectives, and indications on new developments in the area. The appendix also surveys some aspects of the related Euler equations and the compressible Navier-Stokes equations. The book is written in the style of a textbook and the author has attempted to make the treatment self-contained. It can be used as a textbook or a reference book for researchers. Prerequisites for reading the book include some familiarity with the Navier-Stokes equations and some knowledge of functional analysis and Sololev spaces.
Publisher: American Mathematical Soc.
ISBN: 0821827375
Category : Mathematics
Languages : en
Pages : 426
Book Description
Originally published in 1977, the book is devoted to the theory and numerical analysis of the Navier-Stokes equations for viscous incompressible fluid. On the theoretical side, results related to the existence, the uniqueness, and, in some cases, the regularity of solutions are presented. On the numerical side, various approaches to the approximation of Navier-Stokes problems by discretization are considered, such as the finite dereference method, the finite element method, and the fractional steps method. The problems of stability and convergence for numerical methods are treated as completely as possible. The new material in the present book (as compared to the preceding 1984 edition) is an appendix reproducing a survey article written in 1998. This appendix touches upon a few aspects not addressed in the earlier editions, in particular a short derivation of the Navier-Stokes equations from the basic conservation principles in continuum mechanics, further historical perspectives, and indications on new developments in the area. The appendix also surveys some aspects of the related Euler equations and the compressible Navier-Stokes equations. The book is written in the style of a textbook and the author has attempted to make the treatment self-contained. It can be used as a textbook or a reference book for researchers. Prerequisites for reading the book include some familiarity with the Navier-Stokes equations and some knowledge of functional analysis and Sololev spaces.
High-Order Methods for Incompressible Fluid Flow
Author: M. O. Deville
Publisher: Cambridge University Press
ISBN: 9780521453097
Category : Mathematics
Languages : en
Pages : 532
Book Description
Publisher Description
Publisher: Cambridge University Press
ISBN: 9780521453097
Category : Mathematics
Languages : en
Pages : 532
Book Description
Publisher Description
Finite Elements and Fast Iterative Solvers
Author: Howard Elman
Publisher: OUP Oxford
ISBN: 0191667927
Category : Mathematics
Languages : en
Pages : 495
Book Description
This book is a description of why and how to do Scientific Computing for fundamental models of fluid flow. It contains introduction, motivation, analysis, and algorithms and is closely tied to freely available MATLAB codes that implement the methods described. The focus is on finite element approximation methods and fast iterative solution methods for the consequent linear(ized) systems arising in important problems that model incompressible fluid flow. The problems addressed are the Poisson equation, Convection-Diffusion problem, Stokes problem and Navier-Stokes problem, including new material on time-dependent problems and models of multi-physics. The corresponding iterative algebra based on preconditioned Krylov subspace and multigrid techniques is for symmetric and positive definite, nonsymmetric positive definite, symmetric indefinite and nonsymmetric indefinite matrix systems respectively. For each problem and associated solvers there is a description of how to compute together with theoretical analysis that guides the choice of approaches and describes what happens in practice in the many illustrative numerical results throughout the book (computed with the freely downloadable IFISS software). All of the numerical results should be reproducible by readers who have access to MATLAB and there is considerable scope for experimentation in the "computational laboratory " provided by the software. Developments in the field since the first edition was published have been represented in three new chapters covering optimization with PDE constraints (Chapter 5); solution of unsteady Navier-Stokes equations (Chapter 10); solution of models of buoyancy-driven flow (Chapter 11). Each chapter has many theoretical problems and practical computer exercises that involve the use of the IFISS software. This book is suitable as an introduction to iterative linear solvers or more generally as a model of Scientific Computing at an advanced undergraduate or beginning graduate level.
Publisher: OUP Oxford
ISBN: 0191667927
Category : Mathematics
Languages : en
Pages : 495
Book Description
This book is a description of why and how to do Scientific Computing for fundamental models of fluid flow. It contains introduction, motivation, analysis, and algorithms and is closely tied to freely available MATLAB codes that implement the methods described. The focus is on finite element approximation methods and fast iterative solution methods for the consequent linear(ized) systems arising in important problems that model incompressible fluid flow. The problems addressed are the Poisson equation, Convection-Diffusion problem, Stokes problem and Navier-Stokes problem, including new material on time-dependent problems and models of multi-physics. The corresponding iterative algebra based on preconditioned Krylov subspace and multigrid techniques is for symmetric and positive definite, nonsymmetric positive definite, symmetric indefinite and nonsymmetric indefinite matrix systems respectively. For each problem and associated solvers there is a description of how to compute together with theoretical analysis that guides the choice of approaches and describes what happens in practice in the many illustrative numerical results throughout the book (computed with the freely downloadable IFISS software). All of the numerical results should be reproducible by readers who have access to MATLAB and there is considerable scope for experimentation in the "computational laboratory " provided by the software. Developments in the field since the first edition was published have been represented in three new chapters covering optimization with PDE constraints (Chapter 5); solution of unsteady Navier-Stokes equations (Chapter 10); solution of models of buoyancy-driven flow (Chapter 11). Each chapter has many theoretical problems and practical computer exercises that involve the use of the IFISS software. This book is suitable as an introduction to iterative linear solvers or more generally as a model of Scientific Computing at an advanced undergraduate or beginning graduate level.
Automated Solution of Differential Equations by the Finite Element Method
Author: Anders Logg
Publisher: Springer Science & Business Media
ISBN: 3642230997
Category : Computers
Languages : en
Pages : 723
Book Description
This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.
Publisher: Springer Science & Business Media
ISBN: 3642230997
Category : Computers
Languages : en
Pages : 723
Book Description
This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.
Introduction to the Numerical Analysis of Incompressible Viscous Flows
Author: William Layton
Publisher: SIAM
ISBN: 0898718902
Category : Mathematics
Languages : en
Pages : 220
Book Description
Introduction to the Numerical Analysis of Incompressible Viscous Flows treats the numerical analysis of finite element computational fluid dynamics. Assuming minimal background, the text covers finite element methods; the derivation, behavior, analysis, and numerical analysis of Navier-Stokes equations; and turbulence and turbulence models used in simulations. Each chapter on theory is followed by a numerical analysis chapter that expands on the theory. This book provides the foundation for understanding the interconnection of the physics, mathematics, and numerics of the incompressible case, which is essential for progressing to the more complex flows not addressed in this book (e.g., viscoelasticity, plasmas, compressible flows, coating flows, flows of mixtures of fluids, and bubbly flows). With mathematical rigor and physical clarity, the book progresses from the mathematical preliminaries of energy and stress to finite element computational fluid dynamics in a format manageable in one semester. Audience: this unified treatment of fluid mechanics, analysis, and numerical analysis is intended for graduate students in mathematics, engineering, physics, and the sciences who are interested in understanding the foundations of methods commonly used for flow simulations.
Publisher: SIAM
ISBN: 0898718902
Category : Mathematics
Languages : en
Pages : 220
Book Description
Introduction to the Numerical Analysis of Incompressible Viscous Flows treats the numerical analysis of finite element computational fluid dynamics. Assuming minimal background, the text covers finite element methods; the derivation, behavior, analysis, and numerical analysis of Navier-Stokes equations; and turbulence and turbulence models used in simulations. Each chapter on theory is followed by a numerical analysis chapter that expands on the theory. This book provides the foundation for understanding the interconnection of the physics, mathematics, and numerics of the incompressible case, which is essential for progressing to the more complex flows not addressed in this book (e.g., viscoelasticity, plasmas, compressible flows, coating flows, flows of mixtures of fluids, and bubbly flows). With mathematical rigor and physical clarity, the book progresses from the mathematical preliminaries of energy and stress to finite element computational fluid dynamics in a format manageable in one semester. Audience: this unified treatment of fluid mechanics, analysis, and numerical analysis is intended for graduate students in mathematics, engineering, physics, and the sciences who are interested in understanding the foundations of methods commonly used for flow simulations.