Mathematische Werke / Mathematical Works

Mathematische Werke / Mathematical Works PDF Author: Erich Kähler
Publisher: Walter de Gruyter
ISBN: 3110905434
Category : Mathematics
Languages : en
Pages : 984

Get Book Here

Book Description
For most mathematicians and many mathematical physicists the name Erich Kähler is strongly tied to important geometric notions such as Kähler metrics, Kähler manifolds and Kähler groups. They all go back to a paper of 14 pages written in 1932. This, however, is just a small part of Kähler's many outstanding achievements which cover an unusually wide area: From celestial mechanics he got into complex function theory, differential equations, analytic and complex geometry with differential forms, and then into his main topic, i.e. arithmetic geometry where he constructed a system of notions which is a precursor and, in large parts, equivalent to the now used system of Grothendieck and Dieudonné. His principal interest was in finding the unity in the variety of mathematical themes and establishing thus mathematics as a universal language. In this volume Kähler's mathematical papers are collected following a "Tribute to Herrn Erich Kähler" by S. S. Chern, an overview of Kähler's life data by A. Bohm and R. Berndt, and a Survey of his Mathematical Work by the editors. There are also comments and reports on the developments of the main topics of Kähler's work, starting by W. Neumann's paper on the topology of hypersurface singularities, J.-P. Bourguignon's report on Kähler geometry and, among others by Berndt, Bost, Deitmar, Ekeland, Kunz and Krieg, up to A. Nicolai's essay "Supersymmetry, Kähler geometry and Beyond". As Kähler's interest went beyond the realm of mathematics and mathematical physics, any picture of his work would be incomplete without touching his work reaching into other regions. So a short appendix reproduces three of his articles concerning his vision of mathematics as a universal Theme together with an essay by K. Maurin giving an "Approach to the philosophy of Erich Kähler".

Mathematische Werke / Mathematical Works

Mathematische Werke / Mathematical Works PDF Author: Erich Kähler
Publisher: Walter de Gruyter
ISBN: 3110905434
Category : Mathematics
Languages : en
Pages : 984

Get Book Here

Book Description
For most mathematicians and many mathematical physicists the name Erich Kähler is strongly tied to important geometric notions such as Kähler metrics, Kähler manifolds and Kähler groups. They all go back to a paper of 14 pages written in 1932. This, however, is just a small part of Kähler's many outstanding achievements which cover an unusually wide area: From celestial mechanics he got into complex function theory, differential equations, analytic and complex geometry with differential forms, and then into his main topic, i.e. arithmetic geometry where he constructed a system of notions which is a precursor and, in large parts, equivalent to the now used system of Grothendieck and Dieudonné. His principal interest was in finding the unity in the variety of mathematical themes and establishing thus mathematics as a universal language. In this volume Kähler's mathematical papers are collected following a "Tribute to Herrn Erich Kähler" by S. S. Chern, an overview of Kähler's life data by A. Bohm and R. Berndt, and a Survey of his Mathematical Work by the editors. There are also comments and reports on the developments of the main topics of Kähler's work, starting by W. Neumann's paper on the topology of hypersurface singularities, J.-P. Bourguignon's report on Kähler geometry and, among others by Berndt, Bost, Deitmar, Ekeland, Kunz and Krieg, up to A. Nicolai's essay "Supersymmetry, Kähler geometry and Beyond". As Kähler's interest went beyond the realm of mathematics and mathematical physics, any picture of his work would be incomplete without touching his work reaching into other regions. So a short appendix reproduces three of his articles concerning his vision of mathematics as a universal Theme together with an essay by K. Maurin giving an "Approach to the philosophy of Erich Kähler".

How Math Works

How Math Works PDF Author: G. Arnell Williams
Publisher: Rowman & Littlefield Publishers
ISBN: 1442218762
Category : Education
Languages : en
Pages : 347

Get Book Here

Book Description
We hear all the time how American children are falling behind their global peers in various basic subjects, but particularly in math. Is it our fear of math that constrains us? Or our inability to understand math’s place in relation to our everyday lives? How can we help our children better understand the basics of arithmetic if we’re not really sure we understand them ourselves? Here, G. Arnell Williams helps parents and teachers explore the world of math that their elementary school children are learning. Taking readers on a tour of the history of arithmetic, and its growth into the subject we know it to be today, Williams explores the beauty and relevance of mathematics by focusing on the great conceptual depth and genius already inherent in the elementary mathematics familiar to us all, and by connecting it to other well-known areas such as language and the conceptual aspects of everyday life. The result is a book that will help you to better explain mathematics to your children. For those already well versed in these areas, the book offers a tour of the great conceptual and historical facts and assumptions that most simply take for granted. If you are someone who has always struggled with mathematics either because you couldn’t do it or because you never really understood why the rules are the way they are, if you were irritated with the way it was taught to you with the emphasis being only on learning the rules and “recipes” by rote as opposed to obtaining a good conceptual understanding, then How Math Works is for you!

The Mathematical Works of Bernard Bolzano

The Mathematical Works of Bernard Bolzano PDF Author: Bernard Bolzano
Publisher: Oxford University Press
ISBN: 0198539304
Category : Mathematics
Languages : en
Pages : 729

Get Book Here

Book Description
Bernard Bolzano (1781-1848, Prague) was an outstanding thinker and reformer, far ahead of his times in many areas, including philosophy, ethics, politics, logic, theology and physics, and mathematics. Aimed at historians of mathematics, philosophy, ethics and logic, this volume contains the first English translations of some of his most significant mathematical writings, which contain the details of many celebrated insights and anticipations: clear topological definitions of various geometric extensions, an effective statement and use of the Cauchy convergence before it appears in Cauchy's work, remarkable results on measurable numbers (a version of real numbers), on functions (the construction of a continuous, non-differentiable function around 1830) and on infinite collections.

How Math Works

How Math Works PDF Author: Carol Vorderman
Publisher: Reader's Digest Association
ISBN: 9780762102334
Category : Math-juvenile non-fiction, concepts, mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
Here is a stimulating guide to the wonders of mathematics packed with enlightening experiments for the whole family. Provides brain-teasing puzzles and tricks as well as educational experiments that are fun to do.

The Essence of Mathematics Through Elementary Problems

The Essence of Mathematics Through Elementary Problems PDF Author: Alexandre Borovik
Publisher:
ISBN: 9781783746996
Category : Mathematics
Languages : en
Pages : 398

Get Book Here

Book Description


But why Does it Work?

But why Does it Work? PDF Author: Susan Jo Russell
Publisher: Heinemann Educational Books
ISBN: 9780325081144
Category : Education
Languages : en
Pages : 0

Get Book Here

Book Description
If you ask students, "Why does that work?" do they know what you're asking and do you know what to listen for in their responses? Do you have images of what mathematical argument looks like in the elementary grades and how to help students learn to engage in this important practice? Do you have so much content to cover that finding time for this kind of work is difficult? But Why Does It Work? offers a simple, efficient teaching model focused on mathematical argument for developing the ability of students to justify their thinking and engage with the reasoning of others. Designed for individuals as well as study groups, this book includes access to classroom-ready instructional sequences, each built on a model supporting students in: noticing relationships across sets of problems, equations, or expressions articulating a claim about what they notice investigating their claim through representations such as manipulatives, diagrams, or story contexts using their representations to demonstrate why a claim must be true or not extending their thinking from one operation to another. Establishing a classroom culture where students gain confidence in their own mathematical voice and learn to value the contributions of their peers is a critical part of this work. The authors tell us, "If the idea underlying a student's reasoning is not made explicit, the opportunity for all students to engage in such thinking is lost." As students become a true community of mathematicians, they heighten each other's understanding by investigating questions, conjectures, and examples together. Enhanced with extensive video showing the instructional sequences in action-along with guiding focus questions and math investigations-But Why Does It Work? is a flexible approach that will help students confidently articulate and defend their reasoning, and share their deep thinking with others.

Mathematical Works Printed in the Americas, 1554–1700

Mathematical Works Printed in the Americas, 1554–1700 PDF Author: Bruce Stanley Burdick
Publisher: JHU Press
ISBN: 0801888239
Category : History
Languages : en
Pages : 388

Get Book Here

Book Description
"Burdick's exhaustive research has unearthed numerous examples of books not previously cataloged as mathematical. While it was thought that no mathematical writings in English were printed in the Americas before 1703, Burdick gives scholars one of their first chances to discover Jacob Taylor's 1697 Tenebrae, a treatise on solving triangles and other figures using basic trigonometry. He also goes beyond the English language to discuss works in Spanish and Latin, such as Alonso de la Vera Cruz's 1554 logic text, the Recognitio Summularum; a book on astrology by Enrico Martinez; books on the nature of comets by Carlos de Siguenza y Gongora and Eusebio Francisco Kino; and a 1676 almanac by Feliciana Ruiz, the first woman to produce a mathematical work in the Americas.".

Mathematics and Computation

Mathematics and Computation PDF Author: Avi Wigderson
Publisher: Princeton University Press
ISBN: 0691189137
Category : Computers
Languages : en
Pages : 434

Get Book Here

Book Description
From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography

Greek Mathematical Thought and the Origin of Algebra

Greek Mathematical Thought and the Origin of Algebra PDF Author: Jacob Klein
Publisher: Courier Corporation
ISBN: 0486319814
Category : Mathematics
Languages : en
Pages : 246

Get Book Here

Book Description
Important study focuses on the revival and assimilation of ancient Greek mathematics in the 13th-16th centuries, via Arabic science, and the 16th-century development of symbolic algebra. 1968 edition. Bibliography.

Mathematics for Human Flourishing

Mathematics for Human Flourishing PDF Author: Francis Su
Publisher: Yale University Press
ISBN: 0300237138
Category : Mathematics
Languages : en
Pages : 287

Get Book Here

Book Description
"The ancient Greeks argued that the best life was filled with beauty, truth, justice, play and love. The mathematician Francis Su knows just where to find them."--Kevin Hartnett, Quanta Magazine" This is perhaps the most important mathematics book of our time. Francis Su shows mathematics is an experience of the mind and, most important, of the heart."--James Tanton, Global Math Project For mathematician Francis Su, a society without mathematical affection is like a city without concerts, parks, or museums. To miss out on mathematics is to live without experiencing some of humanity's most beautiful ideas. In this profound book, written for a wide audience but especially for those disenchanted by their past experiences, an award-winning mathematician and educator weaves parables, puzzles, and personal reflections to show how mathematics meets basic human desires--such as for play, beauty, freedom, justice, and love--and cultivates virtues essential for human flourishing. These desires and virtues, and the stories told here, reveal how mathematics is intimately tied to being human. Some lessons emerge from those who have struggled, including philosopher Simone Weil, whose own mathematical contributions were overshadowed by her brother's, and Christopher Jackson, who discovered mathematics as an inmate in a federal prison. Christopher's letters to the author appear throughout the book and show how this intellectual pursuit can--and must--be open to all.