Author: Ken-ichi Kojima
Publisher: Springer Science & Business Media
ISBN: 3642462448
Category : Mathematics
Languages : en
Pages : 408
Book Description
A basic method of analyzing particulate gene systems is the proba bilistic and statistical analyses. Mendel himself could not escape from an application of elementary probability analysis although he might have been unaware of this fact. Even Galtonian geneticists in the late 1800's and the early 1900's pursued problems of heredity by means of mathe matics and mathematical statistics. They failed to find the principles of heredity, but succeeded to establish an interdisciplinary area between mathematics and biology, which we call now Biometrics, Biometry, or Applied Statistics. A monumental work in the field of popUlation genetics was published by the late R. A. Fisher, who analyzed "the correlation among relatives" based on Mendelian gene theory (1918). This theoretical analysis over came "so-called blending inheritance" theory, and the orientation of Galtonian explanations for correlations among relatives for quantitative traits rapidly changed. We must not forget the experimental works of Johanson (1909) and Nilsson-Ehle (1909) which supported Mendelian gene theory. However, a large scale experiment for a test of segregation and linkage of Mendelian genes affecting quantitative traits was, prob ably for the first time, conducted by K. Mather and his associates and Panse in the 1940's.
Mathematical Topics in Population Genetics
Author: Ken-ichi Kojima
Publisher: Springer Science & Business Media
ISBN: 3642462448
Category : Mathematics
Languages : en
Pages : 408
Book Description
A basic method of analyzing particulate gene systems is the proba bilistic and statistical analyses. Mendel himself could not escape from an application of elementary probability analysis although he might have been unaware of this fact. Even Galtonian geneticists in the late 1800's and the early 1900's pursued problems of heredity by means of mathe matics and mathematical statistics. They failed to find the principles of heredity, but succeeded to establish an interdisciplinary area between mathematics and biology, which we call now Biometrics, Biometry, or Applied Statistics. A monumental work in the field of popUlation genetics was published by the late R. A. Fisher, who analyzed "the correlation among relatives" based on Mendelian gene theory (1918). This theoretical analysis over came "so-called blending inheritance" theory, and the orientation of Galtonian explanations for correlations among relatives for quantitative traits rapidly changed. We must not forget the experimental works of Johanson (1909) and Nilsson-Ehle (1909) which supported Mendelian gene theory. However, a large scale experiment for a test of segregation and linkage of Mendelian genes affecting quantitative traits was, prob ably for the first time, conducted by K. Mather and his associates and Panse in the 1940's.
Publisher: Springer Science & Business Media
ISBN: 3642462448
Category : Mathematics
Languages : en
Pages : 408
Book Description
A basic method of analyzing particulate gene systems is the proba bilistic and statistical analyses. Mendel himself could not escape from an application of elementary probability analysis although he might have been unaware of this fact. Even Galtonian geneticists in the late 1800's and the early 1900's pursued problems of heredity by means of mathe matics and mathematical statistics. They failed to find the principles of heredity, but succeeded to establish an interdisciplinary area between mathematics and biology, which we call now Biometrics, Biometry, or Applied Statistics. A monumental work in the field of popUlation genetics was published by the late R. A. Fisher, who analyzed "the correlation among relatives" based on Mendelian gene theory (1918). This theoretical analysis over came "so-called blending inheritance" theory, and the orientation of Galtonian explanations for correlations among relatives for quantitative traits rapidly changed. We must not forget the experimental works of Johanson (1909) and Nilsson-Ehle (1909) which supported Mendelian gene theory. However, a large scale experiment for a test of segregation and linkage of Mendelian genes affecting quantitative traits was, prob ably for the first time, conducted by K. Mather and his associates and Panse in the 1940's.
Mathematical Population Genetics 1
Author: Warren J. Ewens
Publisher: Springer Science & Business Media
ISBN: 9780387201917
Category : Science
Languages : en
Pages : 448
Book Description
This is the first of a planned two-volume work discussing the mathematical aspects of population genetics with an emphasis on evolutionary theory. This volume draws heavily from the author’s 1979 classic, but it has been revised and expanded to include recent topics which follow naturally from the treatment in the earlier edition, such as the theory of molecular population genetics.
Publisher: Springer Science & Business Media
ISBN: 9780387201917
Category : Science
Languages : en
Pages : 448
Book Description
This is the first of a planned two-volume work discussing the mathematical aspects of population genetics with an emphasis on evolutionary theory. This volume draws heavily from the author’s 1979 classic, but it has been revised and expanded to include recent topics which follow naturally from the treatment in the earlier edition, such as the theory of molecular population genetics.
Some Mathematical Models from Population Genetics
Author: Alison Etheridge
Publisher: Springer Science & Business Media
ISBN: 3642166318
Category : Mathematics
Languages : en
Pages : 129
Book Description
This work reflects sixteen hours of lectures delivered by the author at the 2009 St Flour summer school in probability. It provides a rapid introduction to a range of mathematical models that have their origins in theoretical population genetics. The models fall into two classes: forwards in time models for the evolution of frequencies of different genetic types in a population; and backwards in time (coalescent) models that trace out the genealogical relationships between individuals in a sample from the population. Some, like the classical Wright-Fisher model, date right back to the origins of the subject. Others, like the multiple merger coalescents or the spatial Lambda-Fleming-Viot process are much more recent. All share a rich mathematical structure. Biological terms are explained, the models are carefully motivated and tools for their study are presented systematically.
Publisher: Springer Science & Business Media
ISBN: 3642166318
Category : Mathematics
Languages : en
Pages : 129
Book Description
This work reflects sixteen hours of lectures delivered by the author at the 2009 St Flour summer school in probability. It provides a rapid introduction to a range of mathematical models that have their origins in theoretical population genetics. The models fall into two classes: forwards in time models for the evolution of frequencies of different genetic types in a population; and backwards in time (coalescent) models that trace out the genealogical relationships between individuals in a sample from the population. Some, like the classical Wright-Fisher model, date right back to the origins of the subject. Others, like the multiple merger coalescents or the spatial Lambda-Fleming-Viot process are much more recent. All share a rich mathematical structure. Biological terms are explained, the models are carefully motivated and tools for their study are presented systematically.
Theoretical Population Genetics
Author: J.S. Gale
Publisher: Springer Science & Business Media
ISBN: 9400903871
Category : Science
Languages : en
Pages : 428
Book Description
The rise of the neutral theory of molecular evolution seems to have aroused a renewed interest in mathematical population genetics among biologists, who are primarily experimenters rather than theoreticians. This has encouraged me to set out the mathematics of the evolutionary process in a manner that, I hope, will be comprehensible to those with only a basic knowledge of calculus and matrix algebra. I must acknowledge from the start my great debt to my students. Equipped initially with rather limited mathematics, they have pursued the subject with much enthusiasm and success. This has enabled me to try a number of different approaches over the years. I was particularly grateful to Dr L. J. Eaves and Professor W. E. Nance for the opportunity to give a one-semester course at the Medical College of Virginia, and I would like to thank them, their colleagues and their students for the many kindnesses shown to me during my visit. I have concentrated almost entirely on stochastic topics, since these cause the greatest problems for non-mathematicians. The latter are particularly concerned with the range of validity of formulae. A sense of confidence in applying these formulae is, almost certainly, best gained by following their derivation. I have set out proofs in fair detail, since, in my experience, minor points of algebraic manipulation occasionally cause problems. To avoid loss of continuity, I have sometimes put material in notes at the end of chapters.
Publisher: Springer Science & Business Media
ISBN: 9400903871
Category : Science
Languages : en
Pages : 428
Book Description
The rise of the neutral theory of molecular evolution seems to have aroused a renewed interest in mathematical population genetics among biologists, who are primarily experimenters rather than theoreticians. This has encouraged me to set out the mathematics of the evolutionary process in a manner that, I hope, will be comprehensible to those with only a basic knowledge of calculus and matrix algebra. I must acknowledge from the start my great debt to my students. Equipped initially with rather limited mathematics, they have pursued the subject with much enthusiasm and success. This has enabled me to try a number of different approaches over the years. I was particularly grateful to Dr L. J. Eaves and Professor W. E. Nance for the opportunity to give a one-semester course at the Medical College of Virginia, and I would like to thank them, their colleagues and their students for the many kindnesses shown to me during my visit. I have concentrated almost entirely on stochastic topics, since these cause the greatest problems for non-mathematicians. The latter are particularly concerned with the range of validity of formulae. A sense of confidence in applying these formulae is, almost certainly, best gained by following their derivation. I have set out proofs in fair detail, since, in my experience, minor points of algebraic manipulation occasionally cause problems. To avoid loss of continuity, I have sometimes put material in notes at the end of chapters.
Mathematical and Statistical Methods for Genetic Analysis
Author: Kenneth Lange
Publisher: Springer Science & Business Media
ISBN: 0387217509
Category : Medical
Languages : en
Pages : 376
Book Description
Written to equip students in the mathematical siences to understand and model the epidemiological and experimental data encountered in genetics research. This second edition expands the original edition by over 100 pages and includes new material. Sprinkled throughout the chapters are many new problems.
Publisher: Springer Science & Business Media
ISBN: 0387217509
Category : Medical
Languages : en
Pages : 376
Book Description
Written to equip students in the mathematical siences to understand and model the epidemiological and experimental data encountered in genetics research. This second edition expands the original edition by over 100 pages and includes new material. Sprinkled throughout the chapters are many new problems.
Human Population Genetics
Author: John H. Relethford
Publisher: John Wiley & Sons
ISBN: 0470464674
Category : Science
Languages : en
Pages : 326
Book Description
Introductory guide to human population genetics and microevolutionary theory Providing an introduction to mathematical population genetics, Human Population Genetics gives basic background on the mechanisms of human microevolution. This text combines mathematics, biology, and anthropology and is best suited for advanced undergraduate and graduate study. Thorough and accessible, Human Population Genetics presents concepts and methods of population genetics specific to human population study, utilizing uncomplicated mathematics like high school algebra and basic concepts of probability to explain theories central to the field. By describing changes in the frequency of genetic variants from one generation to the next, this book hones in on the mathematical basis of evolutionary theory. Human Population Genetics includes: Helpful formulae for learning ease Graphs and analogies that make basic points and relate the evolutionary process to mathematical ideas Glossary terms marked in boldface within the book the first time they appear In-text citations that act as reference points for further research Exemplary case studies Topics such as Hardy-Weinberg equilibrium, inbreeding, mutation, genetic drift, natural selection, and gene flow Human Population Genetics solidifies knowledge learned in introductory biological anthropology or biology courses and makes it applicable to genetic study. NOTE: errata for the first edition can be found at the author's website: http://employees.oneonta.edu/relethjh/HPG/errata.pdf
Publisher: John Wiley & Sons
ISBN: 0470464674
Category : Science
Languages : en
Pages : 326
Book Description
Introductory guide to human population genetics and microevolutionary theory Providing an introduction to mathematical population genetics, Human Population Genetics gives basic background on the mechanisms of human microevolution. This text combines mathematics, biology, and anthropology and is best suited for advanced undergraduate and graduate study. Thorough and accessible, Human Population Genetics presents concepts and methods of population genetics specific to human population study, utilizing uncomplicated mathematics like high school algebra and basic concepts of probability to explain theories central to the field. By describing changes in the frequency of genetic variants from one generation to the next, this book hones in on the mathematical basis of evolutionary theory. Human Population Genetics includes: Helpful formulae for learning ease Graphs and analogies that make basic points and relate the evolutionary process to mathematical ideas Glossary terms marked in boldface within the book the first time they appear In-text citations that act as reference points for further research Exemplary case studies Topics such as Hardy-Weinberg equilibrium, inbreeding, mutation, genetic drift, natural selection, and gene flow Human Population Genetics solidifies knowledge learned in introductory biological anthropology or biology courses and makes it applicable to genetic study. NOTE: errata for the first edition can be found at the author's website: http://employees.oneonta.edu/relethjh/HPG/errata.pdf
Theoretical Aspects of Population Genetics. (MPB-4), Volume 4
Author: Motoo Kimura
Publisher: Princeton University Press
ISBN: 0691210098
Category : Science
Languages : en
Pages : 233
Book Description
To show the importance of stochastic processes in the change of gene frequencies, the authors discuss topics ranging from molecular evolution to two-locus problems in terms of diffusion models. Throughout their discussion, they come to grips with one of the most challenging problems in population genetics--the ways in which genetic variability is maintained in Mendelian populations. R.A. Fisher, J.B.S. Haldane, and Sewall Wright, in pioneering works, confirmed the usefulness of mathematical theory in population genetics. The synthesis their work achieved is recognized today as mathematical genetics, that branch of genetics whose aim is to investigate the laws governing the genetic structure of natural populations and, consequently, to clarify the mechanisms of evolution. For the benefit of population geneticists without advanced mathematical training, Professors Kimura and Ohta use verbal description rather than mathematical symbolism wherever practicable. A mathematical appendix is included.
Publisher: Princeton University Press
ISBN: 0691210098
Category : Science
Languages : en
Pages : 233
Book Description
To show the importance of stochastic processes in the change of gene frequencies, the authors discuss topics ranging from molecular evolution to two-locus problems in terms of diffusion models. Throughout their discussion, they come to grips with one of the most challenging problems in population genetics--the ways in which genetic variability is maintained in Mendelian populations. R.A. Fisher, J.B.S. Haldane, and Sewall Wright, in pioneering works, confirmed the usefulness of mathematical theory in population genetics. The synthesis their work achieved is recognized today as mathematical genetics, that branch of genetics whose aim is to investigate the laws governing the genetic structure of natural populations and, consequently, to clarify the mechanisms of evolution. For the benefit of population geneticists without advanced mathematical training, Professors Kimura and Ohta use verbal description rather than mathematical symbolism wherever practicable. A mathematical appendix is included.
Introduction to Theoretical Population Genetics
Author: Thomas Nagylaki
Publisher: Springer Science & Business Media
ISBN: 364276214X
Category : Science
Languages : en
Pages : 381
Book Description
This book covers those areas of theoretical population genetics that can be investigated rigorously by elementary mathematical methods. I have tried to formulate the various models fairly generally and to state the biological as sumptions quite explicitly. I hope the choice and treatment of topics will en able the reader to understand and evaluate detailed analyses of many specific models and applications in the literature. Models in population genetics are highly idealized, often even over idealized, and their connection with observation is frequently remote. Further more, it is not practicable to measure the parameters and variables in these models with high accuracy. These regrettable circumstances amply justify the use of appropriate, lucid, and rigorous approximations in the analysis of our models, and such approximations are often illuminating even when exact solu tions are available. However, our empirical and theoretical limitations justify neither opaque, incomplete formulations nor unconvincing, inadequate analy ses, for these may produce uninterpretable, misleading, or erroneous results. Intuition is a principal source of ideas for the construction and investigation of models, but it can replace neither clear formulation nor careful analysis. Fisher (1930; 1958, pp. x, 23-24, 38) not only espoused similar ideas, but he recognized also that our concepts of intuition and rigor must evolve in time. The book is neither a review of the literature nor a compendium of results. The material is almost entirely self-contained. The first eight chapters are a thoroughly revised and greatly extended version of my published lecture notes (Nagylaki, 1977a).
Publisher: Springer Science & Business Media
ISBN: 364276214X
Category : Science
Languages : en
Pages : 381
Book Description
This book covers those areas of theoretical population genetics that can be investigated rigorously by elementary mathematical methods. I have tried to formulate the various models fairly generally and to state the biological as sumptions quite explicitly. I hope the choice and treatment of topics will en able the reader to understand and evaluate detailed analyses of many specific models and applications in the literature. Models in population genetics are highly idealized, often even over idealized, and their connection with observation is frequently remote. Further more, it is not practicable to measure the parameters and variables in these models with high accuracy. These regrettable circumstances amply justify the use of appropriate, lucid, and rigorous approximations in the analysis of our models, and such approximations are often illuminating even when exact solu tions are available. However, our empirical and theoretical limitations justify neither opaque, incomplete formulations nor unconvincing, inadequate analy ses, for these may produce uninterpretable, misleading, or erroneous results. Intuition is a principal source of ideas for the construction and investigation of models, but it can replace neither clear formulation nor careful analysis. Fisher (1930; 1958, pp. x, 23-24, 38) not only espoused similar ideas, but he recognized also that our concepts of intuition and rigor must evolve in time. The book is neither a review of the literature nor a compendium of results. The material is almost entirely self-contained. The first eight chapters are a thoroughly revised and greatly extended version of my published lecture notes (Nagylaki, 1977a).
Information Geometry and Population Genetics
Author: Julian Hofrichter
Publisher: Springer
ISBN: 3319520458
Category : Mathematics
Languages : en
Pages : 323
Book Description
The present monograph develops a versatile and profound mathematical perspective of the Wright--Fisher model of population genetics. This well-known and intensively studied model carries a rich and beautiful mathematical structure, which is uncovered here in a systematic manner. In addition to approaches by means of analysis, combinatorics and PDE, a geometric perspective is brought in through Amari's and Chentsov's information geometry. This concept allows us to calculate many quantities of interest systematically; likewise, the employed global perspective elucidates the stratification of the model in an unprecedented manner. Furthermore, the links to statistical mechanics and large deviation theory are explored and developed into powerful tools. Altogether, the manuscript provides a solid and broad working basis for graduate students and researchers interested in this field.
Publisher: Springer
ISBN: 3319520458
Category : Mathematics
Languages : en
Pages : 323
Book Description
The present monograph develops a versatile and profound mathematical perspective of the Wright--Fisher model of population genetics. This well-known and intensively studied model carries a rich and beautiful mathematical structure, which is uncovered here in a systematic manner. In addition to approaches by means of analysis, combinatorics and PDE, a geometric perspective is brought in through Amari's and Chentsov's information geometry. This concept allows us to calculate many quantities of interest systematically; likewise, the employed global perspective elucidates the stratification of the model in an unprecedented manner. Furthermore, the links to statistical mechanics and large deviation theory are explored and developed into powerful tools. Altogether, the manuscript provides a solid and broad working basis for graduate students and researchers interested in this field.
The Mathematical Theory of Selection, Recombination, and Mutation
Author: R. Bürger
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 432
Book Description
"It is close to being a masterpiece...could well be the classic presentation of the area." Warren J. Ewens, University of Pennsylvania, USA Population genetics is concerned with the study of the genetic, ecological, and evolutionary factors that influence and change the genetic composition of populations. The emphasis here is on models that have a direct bearing on evolutionary quantitative genetics. Applications concerning the maintenance of genetic variation in quantitative traits and their dynamics under selection are treated in detail. * Provides a unified, self-contained and in-depth study of the theory of multilocus systems * Introduces the basic population-genetic models * Explores the dynamical and equilibrium properties of the distribution of quantitative traits under selection * Summarizes important results from more demanding sections in a comprehensible way * Employs a clear and logical presentation style Following an introduction to elementary population genetics and discussion of the general theory of selection at two or more loci, the author considers a number of mutation-selection models, and derives the dynamical equations for polygenic traits under general selective regimes. The final chapters are concerned with the maintenance of quantitative-genetic variation, the response to directional selection, the evolutionary role of deleterious mutations, and other topics. Graduate students and researchers in population genetics, evolutionary theory, and biomathematics will benefit from the in-depth coverage. This text will make an excellent reference volume for the fields of quantitative genetics, population and theoretical biology.
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 432
Book Description
"It is close to being a masterpiece...could well be the classic presentation of the area." Warren J. Ewens, University of Pennsylvania, USA Population genetics is concerned with the study of the genetic, ecological, and evolutionary factors that influence and change the genetic composition of populations. The emphasis here is on models that have a direct bearing on evolutionary quantitative genetics. Applications concerning the maintenance of genetic variation in quantitative traits and their dynamics under selection are treated in detail. * Provides a unified, self-contained and in-depth study of the theory of multilocus systems * Introduces the basic population-genetic models * Explores the dynamical and equilibrium properties of the distribution of quantitative traits under selection * Summarizes important results from more demanding sections in a comprehensible way * Employs a clear and logical presentation style Following an introduction to elementary population genetics and discussion of the general theory of selection at two or more loci, the author considers a number of mutation-selection models, and derives the dynamical equations for polygenic traits under general selective regimes. The final chapters are concerned with the maintenance of quantitative-genetic variation, the response to directional selection, the evolutionary role of deleterious mutations, and other topics. Graduate students and researchers in population genetics, evolutionary theory, and biomathematics will benefit from the in-depth coverage. This text will make an excellent reference volume for the fields of quantitative genetics, population and theoretical biology.