Author: Laurent Najman
Publisher: John Wiley & Sons
ISBN: 1118600851
Category : Technology & Engineering
Languages : en
Pages : 407
Book Description
Mathematical Morphology allows for the analysis and processing of geometrical structures using techniques based on the fields of set theory, lattice theory, topology, and random functions. It is the basis of morphological image processing, and finds applications in fields including digital image processing (DSP), as well as areas for graphs, surface meshes, solids, and other spatial structures. This book presents an up-to-date treatment of mathematical morphology, based on the three pillars that made it an important field of theoretical work and practical application: a solid theoretical foundation, a large body of applications and an efficient implementation. The book is divided into five parts and includes 20 chapters. The five parts are structured as follows: Part I sets out the fundamental aspects of the discipline, starting with a general introduction, followed by two more theory-focused chapters, one addressing its mathematical structure and including an updated formalism, which is the result of several decades of work. Part II extends this formalism to some non-deterministic aspects of the theory, in particular detailing links with other disciplines such as stereology, geostatistics and fuzzy logic. Part III addresses the theory of morphological filtering and segmentation, featuring modern connected approaches, from both theoretical and practical aspects. Part IV features practical aspects of mathematical morphology, in particular how to deal with color and multivariate data, links to discrete geometry and topology, and some algorithmic aspects; without which applications would be impossible. Part V showcases all the previously noted fields of work through a sample of interesting, representative and varied applications.
Mathematical Morphology
Author: Laurent Najman
Publisher: John Wiley & Sons
ISBN: 1118600851
Category : Technology & Engineering
Languages : en
Pages : 407
Book Description
Mathematical Morphology allows for the analysis and processing of geometrical structures using techniques based on the fields of set theory, lattice theory, topology, and random functions. It is the basis of morphological image processing, and finds applications in fields including digital image processing (DSP), as well as areas for graphs, surface meshes, solids, and other spatial structures. This book presents an up-to-date treatment of mathematical morphology, based on the three pillars that made it an important field of theoretical work and practical application: a solid theoretical foundation, a large body of applications and an efficient implementation. The book is divided into five parts and includes 20 chapters. The five parts are structured as follows: Part I sets out the fundamental aspects of the discipline, starting with a general introduction, followed by two more theory-focused chapters, one addressing its mathematical structure and including an updated formalism, which is the result of several decades of work. Part II extends this formalism to some non-deterministic aspects of the theory, in particular detailing links with other disciplines such as stereology, geostatistics and fuzzy logic. Part III addresses the theory of morphological filtering and segmentation, featuring modern connected approaches, from both theoretical and practical aspects. Part IV features practical aspects of mathematical morphology, in particular how to deal with color and multivariate data, links to discrete geometry and topology, and some algorithmic aspects; without which applications would be impossible. Part V showcases all the previously noted fields of work through a sample of interesting, representative and varied applications.
Publisher: John Wiley & Sons
ISBN: 1118600851
Category : Technology & Engineering
Languages : en
Pages : 407
Book Description
Mathematical Morphology allows for the analysis and processing of geometrical structures using techniques based on the fields of set theory, lattice theory, topology, and random functions. It is the basis of morphological image processing, and finds applications in fields including digital image processing (DSP), as well as areas for graphs, surface meshes, solids, and other spatial structures. This book presents an up-to-date treatment of mathematical morphology, based on the three pillars that made it an important field of theoretical work and practical application: a solid theoretical foundation, a large body of applications and an efficient implementation. The book is divided into five parts and includes 20 chapters. The five parts are structured as follows: Part I sets out the fundamental aspects of the discipline, starting with a general introduction, followed by two more theory-focused chapters, one addressing its mathematical structure and including an updated formalism, which is the result of several decades of work. Part II extends this formalism to some non-deterministic aspects of the theory, in particular detailing links with other disciplines such as stereology, geostatistics and fuzzy logic. Part III addresses the theory of morphological filtering and segmentation, featuring modern connected approaches, from both theoretical and practical aspects. Part IV features practical aspects of mathematical morphology, in particular how to deal with color and multivariate data, links to discrete geometry and topology, and some algorithmic aspects; without which applications would be impossible. Part V showcases all the previously noted fields of work through a sample of interesting, representative and varied applications.
Mathematical Morphology and Its Applications to Image Processing
Author: Jean Serra
Publisher: Springer Science & Business Media
ISBN: 9401110409
Category : Computers
Languages : en
Pages : 391
Book Description
Mathematical morphology (MM) is a theory for the analysis of spatial structures. It is called morphology since it aims at analysing the shape and form of objects, and it is mathematical in the sense that the analysis is based on set theory, topology, lattice algebra, random functions, etc. MM is not only a theory, but also a powerful image analysis technique. The purpose of the present book is to provide the image analysis community with a snapshot of current theoretical and applied developments of MM. The book consists of forty-five contributions classified by subject. It demonstrates a wide range of topics suited to the morphological approach.
Publisher: Springer Science & Business Media
ISBN: 9401110409
Category : Computers
Languages : en
Pages : 391
Book Description
Mathematical morphology (MM) is a theory for the analysis of spatial structures. It is called morphology since it aims at analysing the shape and form of objects, and it is mathematical in the sense that the analysis is based on set theory, topology, lattice algebra, random functions, etc. MM is not only a theory, but also a powerful image analysis technique. The purpose of the present book is to provide the image analysis community with a snapshot of current theoretical and applied developments of MM. The book consists of forty-five contributions classified by subject. It demonstrates a wide range of topics suited to the morphological approach.
Mathematical Morphology
Author: Hugues Talbot
Publisher: CSIRO PUBLISHING
ISBN: 9780643068049
Category : Computers
Languages : en
Pages : 464
Book Description
Provides a broad sampling of the most recent theoretical and practical developments in applications to image processing and analysis.
Publisher: CSIRO PUBLISHING
ISBN: 9780643068049
Category : Computers
Languages : en
Pages : 464
Book Description
Provides a broad sampling of the most recent theoretical and practical developments in applications to image processing and analysis.
Mathematical Morphology
Author: John Goutsias
Publisher: IOS Press
ISBN: 9781586030568
Category : Computers
Languages : en
Pages : 270
Book Description
This book contains contributions that on the one hand represent modern developments in the area of mathematical morphology, and on the other hand may be of particular interest to an audience of (theoretical) computer scientists. The introductory chapter summarizes some basic notions and concepts of mathematical morphology. In this chapter, a novice reader learns, among other things, that complete lattice theory is generally accepted as the appropriate algebraic framework for mathematical morphology. In the following chapter it is explained that, for a number of cases, the complete lattice framework is too limited, and that one should, instead, work on (complete) inf-semilattices. Other chapters discuss granulometries, analytical aspects of mathematical morphology, and the geometric character of mathematical morphology. Also, connectivity, the watershed transform and a formal language for morphological transformations are being discussed. This book has many interesting things to offer to researches in computer science, mathematics, physics, electrical engineering and other disciplines.
Publisher: IOS Press
ISBN: 9781586030568
Category : Computers
Languages : en
Pages : 270
Book Description
This book contains contributions that on the one hand represent modern developments in the area of mathematical morphology, and on the other hand may be of particular interest to an audience of (theoretical) computer scientists. The introductory chapter summarizes some basic notions and concepts of mathematical morphology. In this chapter, a novice reader learns, among other things, that complete lattice theory is generally accepted as the appropriate algebraic framework for mathematical morphology. In the following chapter it is explained that, for a number of cases, the complete lattice framework is too limited, and that one should, instead, work on (complete) inf-semilattices. Other chapters discuss granulometries, analytical aspects of mathematical morphology, and the geometric character of mathematical morphology. Also, connectivity, the watershed transform and a formal language for morphological transformations are being discussed. This book has many interesting things to offer to researches in computer science, mathematics, physics, electrical engineering and other disciplines.
Mathematical Morphology and Its Applications to Signal and Image Processing
Author: Bernhard Burgeth
Publisher: Springer
ISBN: 3030208672
Category : Computers
Languages : en
Pages : 545
Book Description
This book contains the refereed proceedings of the 14th International Symposium on Mathematical Morphology, ISMM 2019, held in Saarbrücken, Germany, in July 2019. The 40 revised full papers presented together with one invited talk were carefully reviewed and selected from 54 submissions. The papers are organized in topical sections on Theory, Discrete Topology and Tomography, Trees and Hierarchies, Multivariate Morphology, Computational Morphology, Machine Learning, Segmentation, Applications in Engineering, and Applications in (Bio)medical Imaging.
Publisher: Springer
ISBN: 3030208672
Category : Computers
Languages : en
Pages : 545
Book Description
This book contains the refereed proceedings of the 14th International Symposium on Mathematical Morphology, ISMM 2019, held in Saarbrücken, Germany, in July 2019. The 40 revised full papers presented together with one invited talk were carefully reviewed and selected from 54 submissions. The papers are organized in topical sections on Theory, Discrete Topology and Tomography, Trees and Hierarchies, Multivariate Morphology, Computational Morphology, Machine Learning, Segmentation, Applications in Engineering, and Applications in (Bio)medical Imaging.
Mathematical Morphology in Image Processing
Author: Edward Dougherty
Publisher: CRC Press
ISBN: 1482277239
Category : Technology & Engineering
Languages : en
Pages : 552
Book Description
Presents the statistical analysis of morphological filters and their automatic optical design, the development of morphological features for image signatures, and the design of efficient morphological algorithms. Extends the morphological paradigm to include other branches of science and mathematics.;This book is designed to be of interest to optical, electrical and electronics, and electro-optic engineers, including image processing, signal processing, machine vision, and computer vision engineers, applied mathematicians, image analysts and scientists and graduate-level students in image processing and mathematical morphology courses.
Publisher: CRC Press
ISBN: 1482277239
Category : Technology & Engineering
Languages : en
Pages : 552
Book Description
Presents the statistical analysis of morphological filters and their automatic optical design, the development of morphological features for image signatures, and the design of efficient morphological algorithms. Extends the morphological paradigm to include other branches of science and mathematics.;This book is designed to be of interest to optical, electrical and electronics, and electro-optic engineers, including image processing, signal processing, machine vision, and computer vision engineers, applied mathematicians, image analysts and scientists and graduate-level students in image processing and mathematical morphology courses.
Mathematical Morphology in Geomorphology and GISci
Author: Behara Seshadri Daya Sagar
Publisher: CRC Press
ISBN: 1439872023
Category : Mathematics
Languages : en
Pages : 533
Book Description
Mathematical Morphology in Geomorphology and GISci presents a multitude of mathematical morphological approaches for processing and analyzing digital images in quantitative geomorphology and geographic information science (GISci). Covering many interdisciplinary applications, the book explains how to use mathematical morphology not only to perform
Publisher: CRC Press
ISBN: 1439872023
Category : Mathematics
Languages : en
Pages : 533
Book Description
Mathematical Morphology in Geomorphology and GISci presents a multitude of mathematical morphological approaches for processing and analyzing digital images in quantitative geomorphology and geographic information science (GISci). Covering many interdisciplinary applications, the book explains how to use mathematical morphology not only to perform
Mathematical Morphology: 40 Years On
Author: Christian Ronse
Publisher: Springer Science & Business Media
ISBN: 9781402034428
Category : Technology & Engineering
Languages : en
Pages : 512
Book Description
Mathematical Morphology is a speciality in Image Processing and Analysis, which considers images as geometrical objects, to be analyzed through their interactions with other geometrical objects. It relies on several branches of mathematics, such as discrete geometry, topology, lattice theory, partial differential equations, integral geometry and geometrical probability. It has produced fast and efficient algorithms for computer analysis of images, and has found applications in bio-medical imaging, materials science, geoscience, remote sensing, quality control, document processing and data analysis. This book contains the 43 papers presented at the 7th International Symposium on Mathematical Morphology, held in Paris on April 18-20, 2005. It gives a lively state of the art of current research topics in this field. It also marks a milestone, the 40 years of uninterrupted development of this ever-expanding domain.
Publisher: Springer Science & Business Media
ISBN: 9781402034428
Category : Technology & Engineering
Languages : en
Pages : 512
Book Description
Mathematical Morphology is a speciality in Image Processing and Analysis, which considers images as geometrical objects, to be analyzed through their interactions with other geometrical objects. It relies on several branches of mathematics, such as discrete geometry, topology, lattice theory, partial differential equations, integral geometry and geometrical probability. It has produced fast and efficient algorithms for computer analysis of images, and has found applications in bio-medical imaging, materials science, geoscience, remote sensing, quality control, document processing and data analysis. This book contains the 43 papers presented at the 7th International Symposium on Mathematical Morphology, held in Paris on April 18-20, 2005. It gives a lively state of the art of current research topics in this field. It also marks a milestone, the 40 years of uninterrupted development of this ever-expanding domain.
The Mathematics of Urban Morphology
Author: Luca D'Acci
Publisher: Springer
ISBN: 3030123812
Category : Mathematics
Languages : en
Pages : 556
Book Description
This edited volume provides an essential resource for urban morphology, the study of urban forms and structures, offering a much-needed mathematical perspective. Experts on a variety of mathematical modeling techniques provide new insights into specific aspects of the field, such as street networks, sustainability, and urban growth. The chapters collected here make a clear case for the importance of tools and methods to understand, model, and simulate the formation and evolution of cities. The chapters cover a wide variety of topics in urban morphology, and are conveniently organized by their mathematical principles. The first part covers fractals and focuses on how self-similar structures sort themselves out through competition. This is followed by a section on cellular automata, and includes chapters exploring how they generate fractal forms. Networks are the focus of the third part, which includes street networks and other forms as well. Chapters that examine complexity and its relation to urban structures are in part four.The fifth part introduces a variety of other quantitative models that can be used to study urban morphology. In the book’s final section, a series of multidisciplinary commentaries offers readers new ways of looking at the relationship between mathematics and urban forms. Being the first book on this topic, Mathematics of Urban Morphology will be an invaluable resource for applied mathematicians and anyone studying urban morphology. Additionally, anyone who is interested in cities from the angle of economics, sociology, architecture, or geography will also find it useful. "This book provides a useful perspective on the state of the art with respect to urban morphology in general and mathematics as tools and frames to disentangle the ideas that pervade arguments about form and function in particular. There is much to absorb in the pages that follow and there are many pointers to ways in which these ideas can be linked to related theories of cities, urban design and urban policy analysis as well as new movements such as the role of computation in cities and the idea of the smart city. Much food for thought. Read on, digest, enjoy." From the foreword by Michael Batty
Publisher: Springer
ISBN: 3030123812
Category : Mathematics
Languages : en
Pages : 556
Book Description
This edited volume provides an essential resource for urban morphology, the study of urban forms and structures, offering a much-needed mathematical perspective. Experts on a variety of mathematical modeling techniques provide new insights into specific aspects of the field, such as street networks, sustainability, and urban growth. The chapters collected here make a clear case for the importance of tools and methods to understand, model, and simulate the formation and evolution of cities. The chapters cover a wide variety of topics in urban morphology, and are conveniently organized by their mathematical principles. The first part covers fractals and focuses on how self-similar structures sort themselves out through competition. This is followed by a section on cellular automata, and includes chapters exploring how they generate fractal forms. Networks are the focus of the third part, which includes street networks and other forms as well. Chapters that examine complexity and its relation to urban structures are in part four.The fifth part introduces a variety of other quantitative models that can be used to study urban morphology. In the book’s final section, a series of multidisciplinary commentaries offers readers new ways of looking at the relationship between mathematics and urban forms. Being the first book on this topic, Mathematics of Urban Morphology will be an invaluable resource for applied mathematicians and anyone studying urban morphology. Additionally, anyone who is interested in cities from the angle of economics, sociology, architecture, or geography will also find it useful. "This book provides a useful perspective on the state of the art with respect to urban morphology in general and mathematics as tools and frames to disentangle the ideas that pervade arguments about form and function in particular. There is much to absorb in the pages that follow and there are many pointers to ways in which these ideas can be linked to related theories of cities, urban design and urban policy analysis as well as new movements such as the role of computation in cities and the idea of the smart city. Much food for thought. Read on, digest, enjoy." From the foreword by Michael Batty
Morphological Image Analysis
Author: Pierre Soille
Publisher: Springer Science & Business Media
ISBN: 3662039397
Category : Science
Languages : en
Pages : 322
Book Description
The book is self-contained in the sense that it is accessible to engineers, scientists, and practitioners having no prior experience with morphology. In addition, most necessary background notions about digital image processing are covered. The emphasis being put on the techniques useful for solving practical problems rather than the theory underlying mathematical morphology, no special knowledge about set theory and topology is required. Nevertheless, the book goes well beyond an introduction to mathematical morphology. Indeed, starting from the fundamental transformations, more elaborate methods which have proven their practical usefulness are explained. This is achieved through a step by step process pursued until the most recent advances.
Publisher: Springer Science & Business Media
ISBN: 3662039397
Category : Science
Languages : en
Pages : 322
Book Description
The book is self-contained in the sense that it is accessible to engineers, scientists, and practitioners having no prior experience with morphology. In addition, most necessary background notions about digital image processing are covered. The emphasis being put on the techniques useful for solving practical problems rather than the theory underlying mathematical morphology, no special knowledge about set theory and topology is required. Nevertheless, the book goes well beyond an introduction to mathematical morphology. Indeed, starting from the fundamental transformations, more elaborate methods which have proven their practical usefulness are explained. This is achieved through a step by step process pursued until the most recent advances.