Mathematical Modeling of Natural Phenomena

Mathematical Modeling of Natural Phenomena PDF Author: Ranis Ibragimov
Publisher:
ISBN: 9781536129779
Category : Differential equations
Languages : en
Pages : 0

Get Book Here

Book Description
Mathematical modeling in the form of differential equations is a branch of applied mathematics that includes topics from physics, engineering, environmental and computer science. The mathematical model is an approximate description of real processes. Mathematical modeling can be thought of as a three step process: 1) Physical situation; 2) Mathematical formulation; 3) Solution by purely operations of the mathematical problem; 4) Physical interpretation of the mathematical solution. Over the centuries, Step 2 took on a life of its own. Mathematics was studied on its own, devoid of any contact with a physical problem; this is known as pure mathematics. Applied mathematics and mathematical modeling deals with all three steps. Improvements of approximations or their extensions to more general situations may increase the complexity of mathematical models significantly. Before the 18th century, applied mathematics and its methods received the close attention of the best mathematicians who were driven by a desire to develop approximate descriptions of natural phenomena. The goal of asymptotic and perturbation methods is to find useful, approximate solutions to difficult problems that arise from the desire to understand a physical process. Exact solutions are usually either impossible to obtain or too complicated to be useful. Approximate, useful solutions are often tested by comparison with experiments or observations rather than by rigorous mathematical methods. Hence, the authors will not be concerned with rigorous proofs in this book. The derivation of approximate solutions can be done in two different ways. First, one can find an approximate set of equations that can be solved, or, one can find an approximate solution of a set of equations. Usually one must do both. Models of natural science show that the possibilities of applying differential equations for solving problems in the disciplines of the natural scientific cycle are quite wide. This book represents a unique blend of the traditional analytical and numerical methods enriched by the authors developments and applications to ocean and atmospheric sciences. The overall viewpoint taken is a theoretical, unified approach to the study of both the atmosphere and the oceans. One of the key features in this book is the combination of approximate forms of the basic mathematical equations of mathematical modeling with careful and precise analysis. The approximations are required to make any progress possible, while precision is needed to make the progress meaningful. This combination is often the most elusive for student to appreciate. This book aims to highlight this issue by means of accurate derivation of mathematical models with precise analysis and MATLAB applications. This book is meant for undergraduate and graduate students interested in applied mathematics, differential equations and mathematical modeling of real world problems. This book might also be interested in experts working in the field of physics concerning the ocean and atmosphere.

Mathematical Modeling of Natural Phenomena

Mathematical Modeling of Natural Phenomena PDF Author: Ranis Ibragimov
Publisher:
ISBN: 9781536129779
Category : Differential equations
Languages : en
Pages : 0

Get Book Here

Book Description
Mathematical modeling in the form of differential equations is a branch of applied mathematics that includes topics from physics, engineering, environmental and computer science. The mathematical model is an approximate description of real processes. Mathematical modeling can be thought of as a three step process: 1) Physical situation; 2) Mathematical formulation; 3) Solution by purely operations of the mathematical problem; 4) Physical interpretation of the mathematical solution. Over the centuries, Step 2 took on a life of its own. Mathematics was studied on its own, devoid of any contact with a physical problem; this is known as pure mathematics. Applied mathematics and mathematical modeling deals with all three steps. Improvements of approximations or their extensions to more general situations may increase the complexity of mathematical models significantly. Before the 18th century, applied mathematics and its methods received the close attention of the best mathematicians who were driven by a desire to develop approximate descriptions of natural phenomena. The goal of asymptotic and perturbation methods is to find useful, approximate solutions to difficult problems that arise from the desire to understand a physical process. Exact solutions are usually either impossible to obtain or too complicated to be useful. Approximate, useful solutions are often tested by comparison with experiments or observations rather than by rigorous mathematical methods. Hence, the authors will not be concerned with rigorous proofs in this book. The derivation of approximate solutions can be done in two different ways. First, one can find an approximate set of equations that can be solved, or, one can find an approximate solution of a set of equations. Usually one must do both. Models of natural science show that the possibilities of applying differential equations for solving problems in the disciplines of the natural scientific cycle are quite wide. This book represents a unique blend of the traditional analytical and numerical methods enriched by the authors developments and applications to ocean and atmospheric sciences. The overall viewpoint taken is a theoretical, unified approach to the study of both the atmosphere and the oceans. One of the key features in this book is the combination of approximate forms of the basic mathematical equations of mathematical modeling with careful and precise analysis. The approximations are required to make any progress possible, while precision is needed to make the progress meaningful. This combination is often the most elusive for student to appreciate. This book aims to highlight this issue by means of accurate derivation of mathematical models with precise analysis and MATLAB applications. This book is meant for undergraduate and graduate students interested in applied mathematics, differential equations and mathematical modeling of real world problems. This book might also be interested in experts working in the field of physics concerning the ocean and atmosphere.

Mathematical Modeling in Science and Engineering

Mathematical Modeling in Science and Engineering PDF Author: Ismael Herrera
Publisher: John Wiley & Sons
ISBN: 1118207203
Category : Technology & Engineering
Languages : en
Pages : 259

Get Book Here

Book Description
A powerful, unified approach to mathematical and computational modeling in science and engineering Mathematical and computational modeling makes it possible to predict the behavior of a broad range of systems across a broad range of disciplines. This text guides students and professionals through the axiomatic approach, a powerful method that will enable them to easily master the principle types of mathematical and computational models used in engineering and science. Readers will discover that this axiomatic approach not only enables them to systematically construct effective models, it also enables them to apply these models to any macroscopic physical system. Mathematical Modeling in Science and Engineering focuses on models in which the processes to be modeled are expressed as systems of partial differential equations. It begins with an introductory discussion of the axiomatic formulation of basic models, setting the foundation for further topics such as: Mechanics of classical and non-classical continuous systems Solute transport by a free fluid Flow of a fluid in a porous medium Multiphase systems Enhanced oil recovery Fluid mechanics Throughout the text, diagrams are provided to help readers visualize and better understand complex mathematical concepts. A set of exercises at the end of each chapter enables readers to put their new modeling skills into practice. There is also a bibliography in each chapter to facilitate further investigation of individual topics. Mathematical Modeling in Science and Engineering is ideal for both students and professionals across the many disciplines of science and engineering that depend on mathematical and computational modeling to predict and understand complex systems.

Mathematics And The Natural Sciences: The Physical Singularity Of Life

Mathematics And The Natural Sciences: The Physical Singularity Of Life PDF Author: Giuseppe Longo
Publisher: World Scientific
ISBN: 1908977795
Category : Science
Languages : en
Pages : 337

Get Book Here

Book Description
This book identifies the organizing concepts of physical and biological phenomena by an analysis of the foundations of mathematics and physics. Our aim is to propose a dialog between different conceptual universes and thus to provide a unification of phenomena. The role of “order” and symmetries in the foundations of mathematics is linked to the main invariants and principles, among them the geodesic principle (a consequence of symmetries), which govern and confer unity to various physical theories. Moreover, an attempt is made to understand causal structures, a central element of physical intelligibility, in terms of both symmetries and symmetry breakings. A distinction between the principles of (conceptual) construction and of proofs, both in physics and in mathematics, guides most of the work.The importance of mathematical tools is also highlighted to clarify differences in the models for physics and biology that are proposed by continuous and discrete mathematics, such as computational simulations.Since biology is particularly complex and not as well understood at a theoretical level, we propose a “unification by concepts” which in any case should precede mathematization. This constitutes an outline for unification also based on highlighting conceptual differences, complex points of passage and technical irreducibilities of one field to another. Indeed, we suppose here a very common monist point of view, namely the view that living objects are “big bags of molecules”. The main question though is to understand which “theory” can help better understand these bags of molecules. They are, indeed, rather “singular”, from the physical point of view. Technically, we express this singularity through the concept of “extended criticality”, which provides a logical extension of the critical transitions that are known in physics. The presentation is mostly kept at an informal and conceptual level./a

Mathematical Models in Natural Science and Engineering

Mathematical Models in Natural Science and Engineering PDF Author: Juri I. Neimark
Publisher: Springer Science & Business Media
ISBN: 3540478787
Category : Technology & Engineering
Languages : en
Pages : 561

Get Book Here

Book Description
This book has come into being as a result ofthe author's lectures on mathematical modelling rendered to the students, BS and MS degree holders specializing in applied mathematics and computer science and to post-graduate students in exact sciences of the Nizhny Novgorod State University after N.!. Lobatchevsky. These lectures are adapted and presented as a single whole ab out mathematical models and modelling. This new course of lectures appeared because the contemporary Russian educational system in applied mathematics rested upon a combination of fundamental and applied mathematics training; this way of training oriented students upon solving only the exactly stated mathematical problems, and thus there was created a certain estrangement to the most essential stages and sides of real solutions for applied problems, such as thinking over and deeply piercing the essence of a specific problem and its mathematical statement. This statement embraces simplifications, adopted idealizations and creating a mathematical model, its correction and matching the results obtained against a real system. There also existed another main objective, namely to orient university graduates in their future research not only upon purely mathematical issues but also upon comprehending and widely applying mathematics as a universal language of contemporary exact science, and mathematical modelling as a powerful me ans for studying nature, engineering and human society.

The Nature of Mathematical Modeling

The Nature of Mathematical Modeling PDF Author: Neil A. Gershenfeld
Publisher: Cambridge University Press
ISBN: 9780521570954
Category : Mathematics
Languages : en
Pages : 268

Get Book Here

Book Description
This is a book about the nature of mathematical modeling, and about the kinds of techniques that are useful for modeling. The text is in four sections. The first covers exact and approximate analytical techniques; the second, numerical methods; the third, model inference based on observations; and the last, the special role of time in modeling. Each of the topics in the book would be the worthy subject of a dedicated text, but only by presenting the material in this way is it possible to make so much material accessible to so many people. Each chapter presents a concise summary of the core results in an area. The text is complemented by extensive worked problems.

Mathematics Applied to Deterministic Problems in the Natural Sciences

Mathematics Applied to Deterministic Problems in the Natural Sciences PDF Author: C. C. Lin
Publisher: SIAM
ISBN: 9780898712292
Category : Mathematics
Languages : en
Pages : 646

Get Book Here

Book Description
This book addresses the construction, analysis, and intepretation of mathematical models that shed light on significant problems in the physical sciences, with exercises that reinforce, test and extend the reader's understanding. It may be used as an upper level undergraduate or graduate textbook as well as a reference for researchers.

Mathematical and Computational Modeling

Mathematical and Computational Modeling PDF Author: Roderick Melnik
Publisher: John Wiley & Sons
ISBN: 1118853989
Category : Mathematics
Languages : en
Pages : 340

Get Book Here

Book Description
Mathematical and Computational Modeling Illustrates the application of mathematical and computational modeling in a variety of disciplines With an emphasis on the interdisciplinary nature of mathematical and computational modeling, Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts features chapters written by well-known, international experts in these fields and presents readers with a host of state-of-theart achievements in the development of mathematical modeling and computational experiment methodology. The book is a valuable guide to the methods, ideas, and tools of applied and computational mathematics as they apply to other disciplines such as the natural and social sciences, engineering, and technology. The book also features: Rigorous mathematical procedures and applications as the driving force behind mathematical innovation and discovery Numerous examples from a wide range of disciplines to emphasize the multidisciplinary application and universality of applied mathematics and mathematical modeling Original results on both fundamental theoretical and applied developments in diverse areas of human knowledge Discussions that promote interdisciplinary interactions between mathematicians, scientists, and engineers Mathematical and Computational Modeling: With Applications in the Natural and Social Sciences, Engineering, and the Arts is an ideal resource for professionals in various areas of mathematical and statistical sciences, modeling and simulation, physics, computer science, engineering, biology and chemistry, and industrial and computational engineering. The book also serves as an excellent textbook for graduate courses in mathematical modeling, applied mathematics, numerical methods, operations research, and optimization.

Mathematical Modeling and Simulation

Mathematical Modeling and Simulation PDF Author: Kai Velten
Publisher: John Wiley & Sons
ISBN: 3527627618
Category : Science
Languages : en
Pages : 362

Get Book Here

Book Description
This concise and clear introduction to the topic requires only basic knowledge of calculus and linear algebra - all other concepts and ideas are developed in the course of the book. Lucidly written so as to appeal to undergraduates and practitioners alike, it enables readers to set up simple mathematical models on their own and to interpret their results and those of others critically. To achieve this, many examples have been chosen from various fields, such as biology, ecology, economics, medicine, agricultural, chemical, electrical, mechanical and process engineering, which are subsequently discussed in detail. Based on the author`s modeling and simulation experience in science and engineering and as a consultant, the book answers such basic questions as: What is a mathematical model? What types of models do exist? Which model is appropriate for a particular problem? What are simulation, parameter estimation, and validation? The book relies exclusively upon open-source software which is available to everybody free of charge. The entire book software - including 3D CFD and structural mechanics simulation software - can be used based on a free CAELinux-Live-DVD that is available in the Internet (works on most machines and operating systems).

Semantics-Oriented Natural Language Processing

Semantics-Oriented Natural Language Processing PDF Author: Vladimir Fomichov A.
Publisher: Springer Science & Business Media
ISBN: 0387729267
Category : Science
Languages : en
Pages : 340

Get Book Here

Book Description
Gluecklich, die wissen, dass hinter allen Sprachen das Unsaegliche steht. Those are happy who know that behind all languages there is something unsaid Rainer Maria Rilke This book shows in a new way that a solution to a fundamental problem from one scienti?c ?eld can help to ?nd the solutions to important problems emerged in several other ?elds of science and technology. In modern science, the term “Natural Language” denotes the collection of all such languages that every language is used as a primary means of communication by people belonging to any country or any region. So Natural Language (NL) includes, in particular, the English, Russian, and German languages. The applied computer systems processing natural language printed or written texts (NL-texts) or oral speech with respect to the fact that the words are associated with some meanings are called semantics-oriented natural language processing s- tems (NLPSs). On one hand, this book is a snapshot of the current stage of a research p- gram started many years ago and called Integral Formal Semantics (IFS) of NL. The goal of this program has been to develop the formal models and methods he- ing to overcome the dif?culties of logical character associated with the engineering of semantics-oriented NLPSs. The designers of such systems of arbitrary kinds will ?nd in this book the formal means and algorithms being of great help in their work.

Mathematical Modeling

Mathematical Modeling PDF Author: Christof Eck
Publisher: Springer
ISBN: 3319551612
Category : Mathematics
Languages : en
Pages : 519

Get Book Here

Book Description
Mathematical models are the decisive tool to explain and predict phenomena in the natural and engineering sciences. With this book readers will learn to derive mathematical models which help to understand real world phenomena. At the same time a wealth of important examples for the abstract concepts treated in the curriculum of mathematics degrees are given. An essential feature of this book is that mathematical structures are used as an ordering principle and not the fields of application. Methods from linear algebra, analysis and the theory of ordinary and partial differential equations are thoroughly introduced and applied in the modeling process. Examples of applications in the fields electrical networks, chemical reaction dynamics, population dynamics, fluid dynamics, elasticity theory and crystal growth are treated comprehensively.