Bioinformatics Applications Based On Machine Learning

Bioinformatics Applications Based On Machine Learning PDF Author: Pablo Chamoso
Publisher: MDPI
ISBN: 3036507604
Category : Technology & Engineering
Languages : en
Pages : 206

Get Book Here

Book Description
The great advances in information technology (IT) have implications for many sectors, such as bioinformatics, and has considerably increased their possibilities. This book presents a collection of 11 original research papers, all of them related to the application of IT-related techniques within the bioinformatics sector: from new applications created from the adaptation and application of existing techniques to the creation of new methodologies to solve existing problems.

Bioinformatics Applications Based On Machine Learning

Bioinformatics Applications Based On Machine Learning PDF Author: Pablo Chamoso
Publisher: MDPI
ISBN: 3036507604
Category : Technology & Engineering
Languages : en
Pages : 206

Get Book Here

Book Description
The great advances in information technology (IT) have implications for many sectors, such as bioinformatics, and has considerably increased their possibilities. This book presents a collection of 11 original research papers, all of them related to the application of IT-related techniques within the bioinformatics sector: from new applications created from the adaptation and application of existing techniques to the creation of new methodologies to solve existing problems.

Statistical Modeling and Machine Learning for Molecular Biology

Statistical Modeling and Machine Learning for Molecular Biology PDF Author: Alan Moses
Publisher: CRC Press
ISBN: 1482258609
Category : Computers
Languages : en
Pages : 281

Get Book Here

Book Description
• Assumes no background in statistics or computers • Covers most major types of molecular biological data • Covers the statistical and machine learning concepts of most practical utility (P-values, clustering, regression, regularization and classification) • Intended for graduate students beginning careers in molecular biology, systems biology, bioengineering and genetics

Biological Networks

Biological Networks PDF Author: Rudiyanto Gunawan
Publisher: MDPI
ISBN: 3038974331
Category : Science
Languages : en
Pages : 175

Get Book Here

Book Description
This book is a printed edition of the Special Issue "Biological Networks" that was published in Processes

Handbook of Machine Learning Applications for Genomics

Handbook of Machine Learning Applications for Genomics PDF Author: Sanjiban Sekhar Roy
Publisher: Springer Nature
ISBN: 9811691584
Category : Technology & Engineering
Languages : en
Pages : 222

Get Book Here

Book Description
Currently, machine learning is playing a pivotal role in the progress of genomics. The applications of machine learning are helping all to understand the emerging trends and the future scope of genomics. This book provides comprehensive coverage of machine learning applications such as DNN, CNN, and RNN, for predicting the sequence of DNA and RNA binding proteins, expression of the gene, and splicing control. In addition, the book addresses the effect of multiomics data analysis of cancers using tensor decomposition, machine learning techniques for protein engineering, CNN applications on genomics, challenges of long noncoding RNAs in human disease diagnosis, and how machine learning can be used as a tool to shape the future of medicine. More importantly, it gives a comparative analysis and validates the outcomes of machine learning methods on genomic data to the functional laboratory tests or by formal clinical assessment. The topics of this book will cater interest to academicians, practitioners working in the field of functional genomics, and machine learning. Also, this book shall guide comprehensively the graduate, postgraduates, and Ph.D. scholars working in these fields.

A Primer in Mathematical Models in Biology

A Primer in Mathematical Models in Biology PDF Author: Lee A. Segel
Publisher: SIAM
ISBN: 1611972493
Category : Science
Languages : en
Pages : 435

Get Book Here

Book Description
A textbook on mathematical modelling techniques with powerful applications to biology, combining theoretical exposition with exercises and examples.

Bayesian Reasoning and Gaussian Processes for Machine Learning Applications

Bayesian Reasoning and Gaussian Processes for Machine Learning Applications PDF Author: Hemachandran K
Publisher: CRC Press
ISBN: 1000569586
Category : Business & Economics
Languages : en
Pages : 147

Get Book Here

Book Description
This book introduces Bayesian reasoning and Gaussian processes into machine learning applications. Bayesian methods are applied in many areas, such as game development, decision making, and drug discovery. It is very effective for machine learning algorithms in handling missing data and extracting information from small datasets. Bayesian Reasoning and Gaussian Processes for Machine Learning Applications uses a statistical background to understand continuous distributions and how learning can be viewed from a probabilistic framework. The chapters progress into such machine learning topics as belief network and Bayesian reinforcement learning, which is followed by Gaussian process introduction, classification, regression, covariance, and performance analysis of Gaussian processes with other models. FEATURES Contains recent advancements in machine learning Highlights applications of machine learning algorithms Offers both quantitative and qualitative research Includes numerous case studies This book is aimed at graduates, researchers, and professionals in the field of data science and machine learning.

Network Models for Data Science

Network Models for Data Science PDF Author: Alan Julian Izenman
Publisher: Cambridge University Press
ISBN: 1108835767
Category : Mathematics
Languages : en
Pages : 501

Get Book Here

Book Description
This is the first book to describe modern methods for analyzing complex networks arising from a wide range of disciplines.

Dynamics of Mathematical Models in Biology

Dynamics of Mathematical Models in Biology PDF Author: Alessandra Rogato
Publisher: Springer
ISBN: 3319457233
Category : Mathematics
Languages : en
Pages : 154

Get Book Here

Book Description
This volume focuses on contributions from both the mathematics and life science community surrounding the concepts of time and dynamicity of nature, two significant elements which are often overlooked in modeling process to avoid exponential computations. The book is divided into three distinct parts: dynamics of genomes and genetic variation, dynamics of motifs, and dynamics of biological networks. Chapters included in dynamics of genomes and genetic variation analyze the molecular mechanisms and evolutionary processes that shape the structure and function of genomes and those that govern genome dynamics. The dynamics of motifs portion of the volume provides an overview of current methods for motif searching in DNA, RNA and proteins, a key process to discover emergent properties of cells, tissues, and organisms. The part devoted to the dynamics of biological networks covers networks aptly discusses networks in complex biological functions and activities that interpret processes in cells. Moreover, chapters in this section examine several mathematical models and algorithms available for integration, analysis, and characterization. Once life scientists began to produce experimental data at an unprecedented pace, it become clear that mathematical models were necessary to interpret data, to structure information with the aim to unveil biological mechanisms, discover results, and make predictions. The second annual “Bringing Maths to Life” workshop held in Naples, Italy October 2015, enabled a bi-directional flow of ideas from and international group of mathematicians and biologists. The venue allowed mathematicians to introduce novel algorithms, methods, and software that may be useful to model aspects of life science, and life scientists posed new challenges for mathematicians.

Machine Learning and Mathematical Models for Single-Cell Data Analysis

Machine Learning and Mathematical Models for Single-Cell Data Analysis PDF Author: Le Ou-Yang
Publisher: Frontiers Media SA
ISBN: 2832501842
Category : Science
Languages : en
Pages : 118

Get Book Here

Book Description


Computational Genomics with R

Computational Genomics with R PDF Author: Altuna Akalin
Publisher: CRC Press
ISBN: 1498781861
Category : Mathematics
Languages : en
Pages : 463

Get Book Here

Book Description
Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015.