Author: H. Cerjak
Publisher: CRC Press
ISBN: 1040290914
Category : Technology & Engineering
Languages : en
Pages : 697
Book Description
Contains the papers presented at the fourth International Seminar "Numerical Analysis of Weldability" held in September 1997 at Schloss Seggau near Graz, Austria.
Mathematical Modelling of Weld Phenomena: No. 4
Author: H. Cerjak
Publisher: CRC Press
ISBN: 1040290914
Category : Technology & Engineering
Languages : en
Pages : 697
Book Description
Contains the papers presented at the fourth International Seminar "Numerical Analysis of Weldability" held in September 1997 at Schloss Seggau near Graz, Austria.
Publisher: CRC Press
ISBN: 1040290914
Category : Technology & Engineering
Languages : en
Pages : 697
Book Description
Contains the papers presented at the fourth International Seminar "Numerical Analysis of Weldability" held in September 1997 at Schloss Seggau near Graz, Austria.
Mathematical Modelling of Weld Phenomena 4
Author: H. Cerjak
Publisher: CRC Press
ISBN: 9781861250605
Category : Mathematics
Languages : en
Pages : 712
Book Description
Contains the papers presented at the fourth International Seminar "Numerical Analysis of Weldability" held in September 1997 at Schloss Seggau near Graz, Austria.
Publisher: CRC Press
ISBN: 9781861250605
Category : Mathematics
Languages : en
Pages : 712
Book Description
Contains the papers presented at the fourth International Seminar "Numerical Analysis of Weldability" held in September 1997 at Schloss Seggau near Graz, Austria.
Comprehensive Structural Integrity
Author: I. Milne
Publisher: Elsevier
ISBN: 0080437494
Category :
Languages : en
Pages : 749
Book Description
Publisher: Elsevier
ISBN: 0080437494
Category :
Languages : en
Pages : 749
Book Description
Mathematical Modelling of Weld Phenomena 4
Author: H. Cerjak
Publisher: CRC Press
ISBN: 9781861250605
Category : Microstructure
Languages : en
Pages : 0
Book Description
Contains the papers presented at the fourth International Seminar "Numerical Analysis of Weldability" held in September 1997 at Schloss Seggau near Graz, Austria.
Publisher: CRC Press
ISBN: 9781861250605
Category : Microstructure
Languages : en
Pages : 0
Book Description
Contains the papers presented at the fourth International Seminar "Numerical Analysis of Weldability" held in September 1997 at Schloss Seggau near Graz, Austria.
Hot Cracking Phenomena in Welds
Author: Thomas Böllinghaus
Publisher: Springer Science & Business Media
ISBN: 9783540223320
Category : Science
Languages : en
Pages : 412
Book Description
Hot cracking in welds still has not been fully understood. Hot Cracking Phenomena in Welds contains 20 individual contributions from experts all over the world. The book provides the latest insight on hot cracking phenomena in welds and gives a comprehensive overview of the state of knowledge in this subject, addressing engineers and scientists in research and development. It contains numerous solutions and helpful guidance on specific problems, particularly for welding engineers confronted with hot cracking in practice. The book touches all three types of hot cracking, namely solidification cracking, liquation cracking and ductility dip cracking. It explains the differences of the mechanisms,thus representing also a very helpful tool for metallurgists and advanced engineering students. TOC:Phenomena and Mechanisms.- Metallurgy and Materials.- Modelling and Simulation.- Testing and Standardisation.
Publisher: Springer Science & Business Media
ISBN: 9783540223320
Category : Science
Languages : en
Pages : 412
Book Description
Hot cracking in welds still has not been fully understood. Hot Cracking Phenomena in Welds contains 20 individual contributions from experts all over the world. The book provides the latest insight on hot cracking phenomena in welds and gives a comprehensive overview of the state of knowledge in this subject, addressing engineers and scientists in research and development. It contains numerous solutions and helpful guidance on specific problems, particularly for welding engineers confronted with hot cracking in practice. The book touches all three types of hot cracking, namely solidification cracking, liquation cracking and ductility dip cracking. It explains the differences of the mechanisms,thus representing also a very helpful tool for metallurgists and advanced engineering students. TOC:Phenomena and Mechanisms.- Metallurgy and Materials.- Modelling and Simulation.- Testing and Standardisation.
Computational Welding Mechanics
Author: Lars-Erik Lindgren
Publisher: Elsevier
ISBN: 1845693558
Category : Computers
Languages : en
Pages : 246
Book Description
Computational welding mechanics (CWM) provides an important technique for modelling welding processes. Welding simulations are a key tool in improving the design and control of welding processes and the performance of welded components or structures. CWM can be used to model phenomena such as heat generation, thermal stresses and large plastic deformations of components or structures. It also has a wider application in modelling thermomechanical and microstructural phenomena in metals. This important book reviews the principles, methods and applications of CWM.The book begins by discussing the physics of welding before going on to review modelling methods and options as well as validation techniques. It also reviews applications in areas such as fatigue, buckling and deformation, improved service life of components and process optimisation. Some of the numerical methods described in the book are illustrated using software available from the author which allows readers to explore CWM in more depth.Computational welding mechanics is a standard work for welding engineers and all those researching welding processes and wider thermomechanical and microstructural phenomena in metals. - Highlights the principles, methods and applications of CWM - Discusses the physics of welding - Assesses modelling methods and validation techniques
Publisher: Elsevier
ISBN: 1845693558
Category : Computers
Languages : en
Pages : 246
Book Description
Computational welding mechanics (CWM) provides an important technique for modelling welding processes. Welding simulations are a key tool in improving the design and control of welding processes and the performance of welded components or structures. CWM can be used to model phenomena such as heat generation, thermal stresses and large plastic deformations of components or structures. It also has a wider application in modelling thermomechanical and microstructural phenomena in metals. This important book reviews the principles, methods and applications of CWM.The book begins by discussing the physics of welding before going on to review modelling methods and options as well as validation techniques. It also reviews applications in areas such as fatigue, buckling and deformation, improved service life of components and process optimisation. Some of the numerical methods described in the book are illustrated using software available from the author which allows readers to explore CWM in more depth.Computational welding mechanics is a standard work for welding engineers and all those researching welding processes and wider thermomechanical and microstructural phenomena in metals. - Highlights the principles, methods and applications of CWM - Discusses the physics of welding - Assesses modelling methods and validation techniques
Comprehensive Structural Integrity
Author: Ian Milne
Publisher: Elsevier
ISBN: 0080490735
Category : Business & Economics
Languages : en
Pages : 4647
Book Description
The aim of this major reference work is to provide a first point of entry to the literature for the researchers in any field relating to structural integrity in the form of a definitive research/reference tool which links the various sub-disciplines that comprise the whole of structural integrity. Special emphasis will be given to the interaction between mechanics and materials and structural integrity applications. Because of the interdisciplinary and applied nature of the work, it will be of interest to mechanical engineers and materials scientists from both academic and industrial backgrounds including bioengineering, interface engineering and nanotechnology. The scope of this work encompasses, but is not restricted to: fracture mechanics, fatigue, creep, materials, dynamics, environmental degradation, numerical methods, failure mechanisms and damage mechanics, interfacial fracture and nano-technology, structural analysis, surface behaviour and heart valves. The structures under consideration include: pressure vessels and piping, off-shore structures, gas installations and pipelines, chemical plants, aircraft, railways, bridges, plates and shells, electronic circuits, interfaces, nanotechnology, artificial organs, biomaterial prostheses, cast structures, mining... and more. Case studies will form an integral part of the work.
Publisher: Elsevier
ISBN: 0080490735
Category : Business & Economics
Languages : en
Pages : 4647
Book Description
The aim of this major reference work is to provide a first point of entry to the literature for the researchers in any field relating to structural integrity in the form of a definitive research/reference tool which links the various sub-disciplines that comprise the whole of structural integrity. Special emphasis will be given to the interaction between mechanics and materials and structural integrity applications. Because of the interdisciplinary and applied nature of the work, it will be of interest to mechanical engineers and materials scientists from both academic and industrial backgrounds including bioengineering, interface engineering and nanotechnology. The scope of this work encompasses, but is not restricted to: fracture mechanics, fatigue, creep, materials, dynamics, environmental degradation, numerical methods, failure mechanisms and damage mechanics, interfacial fracture and nano-technology, structural analysis, surface behaviour and heart valves. The structures under consideration include: pressure vessels and piping, off-shore structures, gas installations and pipelines, chemical plants, aircraft, railways, bridges, plates and shells, electronic circuits, interfaces, nanotechnology, artificial organs, biomaterial prostheses, cast structures, mining... and more. Case studies will form an integral part of the work.
Continuum Scale Simulation of Engineering Materials
Author: Dierk Raabe
Publisher: John Wiley & Sons
ISBN: 3527604219
Category : Technology & Engineering
Languages : en
Pages : 885
Book Description
This book fills a gap by presenting our current knowledge and understanding of continuum-based concepts behind computational methods used for microstructure and process simulation of engineering materials above the atomic scale. The volume provides an excellent overview on the different methods, comparing the different methods in terms of their respective particular weaknesses and advantages. This trains readers to identify appropriate approaches to the new challenges that emerge every day in this exciting domain. Divided into three main parts, the first is a basic overview covering fundamental key methods in the field of continuum scale materials simulation. The second one then goes on to look at applications of these methods to the prediction of microstructures, dealing with explicit simulation examples, while the third part discusses example applications in the field of process simulation. By presenting a spectrum of different computational approaches to materials, the book aims to initiate the development of corresponding virtual laboratories in the industry in which these methods are exploited. As such, it addresses graduates and undergraduates, lecturers, materials scientists and engineers, physicists, biologists, chemists, mathematicians, and mechanical engineers.
Publisher: John Wiley & Sons
ISBN: 3527604219
Category : Technology & Engineering
Languages : en
Pages : 885
Book Description
This book fills a gap by presenting our current knowledge and understanding of continuum-based concepts behind computational methods used for microstructure and process simulation of engineering materials above the atomic scale. The volume provides an excellent overview on the different methods, comparing the different methods in terms of their respective particular weaknesses and advantages. This trains readers to identify appropriate approaches to the new challenges that emerge every day in this exciting domain. Divided into three main parts, the first is a basic overview covering fundamental key methods in the field of continuum scale materials simulation. The second one then goes on to look at applications of these methods to the prediction of microstructures, dealing with explicit simulation examples, while the third part discusses example applications in the field of process simulation. By presenting a spectrum of different computational approaches to materials, the book aims to initiate the development of corresponding virtual laboratories in the industry in which these methods are exploited. As such, it addresses graduates and undergraduates, lecturers, materials scientists and engineers, physicists, biologists, chemists, mathematicians, and mechanical engineers.
Modeling, Simulation and Optimization of Complex Processes
Author: Hans Georg Bock
Publisher: Springer Science & Business Media
ISBN: 3540271708
Category : Computers
Languages : en
Pages : 600
Book Description
This proceedings volume contains a selection of papers presented at the symposium "International Conference on High Performance Scientific Computing'' held at the Hanoi Institute of Mathematics of the Vietnam National Center for Natural Science and Technology (NCST), March 10-14, 2003. The conference has been organized by the Hanoi Institute of Mathematics, SFB 359 ''Reactive Flows, Transport and Diffusion'', Heidelberg, Ho Chi Minh City University of Technology and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg. The contributions cover the broad interdisciplinary spectrum of scientific computing and present recent advances in theory, development of methods, and applications in practice. Subjects covered are mathematical modelling, numerical simulation, methods for optimization and optimal control, parallel computing, symbolic computing, software development, applications of scientific computing in physics, chemistry, biology and mechanics, environmental and hydrology problems, transport, logistics and site location, communication networks, production scheduling, industrial and commercial problems.
Publisher: Springer Science & Business Media
ISBN: 3540271708
Category : Computers
Languages : en
Pages : 600
Book Description
This proceedings volume contains a selection of papers presented at the symposium "International Conference on High Performance Scientific Computing'' held at the Hanoi Institute of Mathematics of the Vietnam National Center for Natural Science and Technology (NCST), March 10-14, 2003. The conference has been organized by the Hanoi Institute of Mathematics, SFB 359 ''Reactive Flows, Transport and Diffusion'', Heidelberg, Ho Chi Minh City University of Technology and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg. The contributions cover the broad interdisciplinary spectrum of scientific computing and present recent advances in theory, development of methods, and applications in practice. Subjects covered are mathematical modelling, numerical simulation, methods for optimization and optimal control, parallel computing, symbolic computing, software development, applications of scientific computing in physics, chemistry, biology and mechanics, environmental and hydrology problems, transport, logistics and site location, communication networks, production scheduling, industrial and commercial problems.
Thermal Processes in Welding
Author: Victor A. Karkhin
Publisher: Springer
ISBN: 9811359652
Category : Technology & Engineering
Languages : en
Pages : 492
Book Description
This book describes and systemizes analytical and numerical solutions for a broad range of instantaneous and continuous, stationary and moving, concentrated and distributed, 1D, 2D and 3D heat sources in semi-infinite bodies, thick plane layers, thin plates and cylinders under various boundary conditions. The analytical solutions were mainly obtained by the superimposing principle for various parts of the proposed 1D, 2D and 3D heat sources and based on the assumption that only heat conduction plays a major role in the thermal analysis of welds. Other complex effects of heat transfer in weld phenomena are incorporated in the solutions by means of various geometrical and energetic parameters of the heat source. The book is divided into 13 chapters. Chapter 1 briefly reviews various welding processes and the energy characteristics of welding heat sources, while Chapter 2 covers the main thermophysical properties of the most commonly used alloys. Chapter 3 describes the physical fundamentals of heat conduction during welding, and Chapter 4 introduces several useful methods for solving the problem of heat conduction in welding. Chapters 5 and 6 focus on the derivation of analytical solutions for many types of heat sources in semi-infinite bodies, thick plane layers, thin plates and cylinders under various boundary conditions. The heat sources can be instantaneous or continuous, stationary or moving, concentrated or distributed (1D, 2D or 3D). In Chapter 7 the temperature field under programmed heat input (pulsed power sources and weaving sources) is analyzed. In turn, Chapters 8 and 9 cover the thermal cycle, melting and solidification of the base metal. Heating and melting of filler metal are considered in Chapter 10. Chapter 11 addresses the formulation and solution of inverse heat conduction problems using zero-, first- and second-order algorithms, while Chapter 12 focuses on applying the solutions developed here to the optimization of welding conditions. In addition, case studies confirm the usefulness and feasibility of the respective solutions. Lastly, Chapter 13 demonstrates the prediction of local microstructure and mechanical properties of welded joint metals, while taking into account their thermal cycle. The book is intended for all researches, welding engineers, mechanical design engineers, research engineers and postgraduate students who deal with problems such as microstructure modeling of welds, analysis of the mechanical properties of welded metals, weldability, residual stresses and distortions, optimization of welding and allied processes (prewelding heating, cladding, thermal cutting, additive technologies, etc.). It also offers a useful reference guide for software engineers who are interested in writing application software for simulating welding processes, microstructure modeling, residual stress analysis of welds, and for robotic-welding control systems.
Publisher: Springer
ISBN: 9811359652
Category : Technology & Engineering
Languages : en
Pages : 492
Book Description
This book describes and systemizes analytical and numerical solutions for a broad range of instantaneous and continuous, stationary and moving, concentrated and distributed, 1D, 2D and 3D heat sources in semi-infinite bodies, thick plane layers, thin plates and cylinders under various boundary conditions. The analytical solutions were mainly obtained by the superimposing principle for various parts of the proposed 1D, 2D and 3D heat sources and based on the assumption that only heat conduction plays a major role in the thermal analysis of welds. Other complex effects of heat transfer in weld phenomena are incorporated in the solutions by means of various geometrical and energetic parameters of the heat source. The book is divided into 13 chapters. Chapter 1 briefly reviews various welding processes and the energy characteristics of welding heat sources, while Chapter 2 covers the main thermophysical properties of the most commonly used alloys. Chapter 3 describes the physical fundamentals of heat conduction during welding, and Chapter 4 introduces several useful methods for solving the problem of heat conduction in welding. Chapters 5 and 6 focus on the derivation of analytical solutions for many types of heat sources in semi-infinite bodies, thick plane layers, thin plates and cylinders under various boundary conditions. The heat sources can be instantaneous or continuous, stationary or moving, concentrated or distributed (1D, 2D or 3D). In Chapter 7 the temperature field under programmed heat input (pulsed power sources and weaving sources) is analyzed. In turn, Chapters 8 and 9 cover the thermal cycle, melting and solidification of the base metal. Heating and melting of filler metal are considered in Chapter 10. Chapter 11 addresses the formulation and solution of inverse heat conduction problems using zero-, first- and second-order algorithms, while Chapter 12 focuses on applying the solutions developed here to the optimization of welding conditions. In addition, case studies confirm the usefulness and feasibility of the respective solutions. Lastly, Chapter 13 demonstrates the prediction of local microstructure and mechanical properties of welded joint metals, while taking into account their thermal cycle. The book is intended for all researches, welding engineers, mechanical design engineers, research engineers and postgraduate students who deal with problems such as microstructure modeling of welds, analysis of the mechanical properties of welded metals, weldability, residual stresses and distortions, optimization of welding and allied processes (prewelding heating, cladding, thermal cutting, additive technologies, etc.). It also offers a useful reference guide for software engineers who are interested in writing application software for simulating welding processes, microstructure modeling, residual stress analysis of welds, and for robotic-welding control systems.