Continuum Modeling in the Physical Sciences

Continuum Modeling in the Physical Sciences PDF Author: E. van Groesen
Publisher: SIAM
ISBN: 9780898718249
Category : Mathematics
Languages : en
Pages : 238

Get Book Here

Book Description
Mathematical modeling - the ability to apply mathematical concepts and techniques to real-life systems has expanded considerably over the last decades, making it impossible to cover all of its aspects in one course or textbook. Continuum Modeling in the Physical Sciences provides an extensive exposition of the general principles and methods of this growing field with a focus on applications in the natural sciences. The authors present a thorough treatment of mathematical modeling from the elementary level to more advanced concepts. Most of the chapters are devoted to a discussion of central issues such as dimensional analysis, conservation principles, balance laws, constitutive relations, stability, robustness, and variational methods, and are accompanied by numerous real-life examples. Readers will benefit from the exercises placed throughout the text and the challenging problems sections found at the ends of several chapters.

Mathematical Modeling of Physical Systems

Mathematical Modeling of Physical Systems PDF Author: Diran Basmadjian
Publisher: Oxford University Press on Demand
ISBN: 9780195153149
Category : Language Arts & Disciplines
Languages : en
Pages : 350

Get Book Here

Book Description
Both analytical and numerical methods are explained in enough detail to function as learning tools for the beginner or as refreshers for the more informed reader. Ideal for third-year engineering, mathematics, physics, and chemistry students."--BOOK JACKET.

Mathematical Modelling

Mathematical Modelling PDF Author: Simon Serovajsky
Publisher: CRC Press
ISBN: 1000503976
Category : Mathematics
Languages : en
Pages : 466

Get Book Here

Book Description
Mathematical Modelling sets out the general principles of mathematical modelling as a means comprehending the world. Within the book, the problems of physics, engineering, chemistry, biology, medicine, economics, ecology, sociology, psychology, political science, etc. are all considered through this uniform lens. The author describes different classes of models, including lumped and distributed parameter systems, deterministic and stochastic models, continuous and discrete models, static and dynamical systems, and more. From a mathematical point of view, the considered models can be understood as equations and systems of equations of different nature and variational principles. In addition to this, mathematical features of mathematical models, applied control and optimization problems based on mathematical models, and identification of mathematical models are also presented. Features Each chapter includes four levels: a lecture (main chapter material), an appendix (additional information), notes (explanations, technical calculations, literature review) and tasks for independent work; this is suitable for undergraduates and graduate students and does not require the reader to take any prerequisite course, but may be useful for researchers as well Described mathematical models are grouped both by areas of application and by the types of obtained mathematical problems, which contributes to both the breadth of coverage of the material and the depth of its understanding Can be used as the main textbook on a mathematical modelling course, and is also recommended for special courses on mathematical models for physics, chemistry, biology, economics, etc.

Mathematical Modeling for the Scientific Method

Mathematical Modeling for the Scientific Method PDF Author: David Pravica
Publisher: Jones & Bartlett Learning
ISBN: 0763779466
Category : Mathematics
Languages : en
Pages : 521

Get Book Here

Book Description
Part of the International Series in Mathematics Mathematical Modeling for the Scientific Method is intended for the sophomore/junior-level student seeking to be well-grounded in mathematical modeling for their studies in biology, the physical sciences, engineering, and/or medicine. It clarifies the connection between deductive and inductive reasoning as used in Mathematics and Science and urges students to think critically about concepts and applications. The authors’ goal is to be introductory in level while covering a broad range of techniques. They unite topics in statistics, linear algebra, calculus and differential equations, while discussing how these subjects are interrelated and utilized. Mathematical Modeling for the Scientific Method leaves students with a clearer perspective of the role of mathematics within the sciences and the understanding of how to rationally work through even rigorous applications with ease.

Mathematical Models In Science

Mathematical Models In Science PDF Author: Olav Arnfinn Laudal
Publisher: World Scientific
ISBN: 1800610297
Category : Science
Languages : en
Pages : 319

Get Book Here

Book Description
Mathematical Models in Science treats General Relativity and Quantum Mechanics in a non-commutative Algebraic Geometric framework.Based on ideas first published in Geometry of Time-Spaces: Non-commutative Algebraic Geometry Applied to Quantum Theory (World Scientific, 2011), Olav Arnfinn Laudal proposes a Toy Model as a Theory of Everything, starting with the notion of the Big Bang in Cosmology, modeled as the non-commutative deformation of a thick point. From this point, the author shows how to extract reasonable models for both General Relativity and Quantum Theory. This book concludes that the universe turns out to be the 6-dimensional Hilbert scheme of pairs of points in affine 3-space. With this in place, one may develop within the model much of the physics known to the reader. In particular, this theory is applicable to the concept of Dark Matter and its effects on our visual universe.Hence, Mathematical Models in Science proves the dependency of deformation theory in Mathematical Physics and summarizes the development of physical applications of pure mathematics developed in the twentieth century.

Mathematical Modeling and Simulation

Mathematical Modeling and Simulation PDF Author: Kai Velten
Publisher: John Wiley & Sons
ISBN: 3527627618
Category : Science
Languages : en
Pages : 362

Get Book Here

Book Description
This concise and clear introduction to the topic requires only basic knowledge of calculus and linear algebra - all other concepts and ideas are developed in the course of the book. Lucidly written so as to appeal to undergraduates and practitioners alike, it enables readers to set up simple mathematical models on their own and to interpret their results and those of others critically. To achieve this, many examples have been chosen from various fields, such as biology, ecology, economics, medicine, agricultural, chemical, electrical, mechanical and process engineering, which are subsequently discussed in detail. Based on the author`s modeling and simulation experience in science and engineering and as a consultant, the book answers such basic questions as: What is a mathematical model? What types of models do exist? Which model is appropriate for a particular problem? What are simulation, parameter estimation, and validation? The book relies exclusively upon open-source software which is available to everybody free of charge. The entire book software - including 3D CFD and structural mechanics simulation software - can be used based on a free CAELinux-Live-DVD that is available in the Internet (works on most machines and operating systems).

The Nature of Mathematical Modeling

The Nature of Mathematical Modeling PDF Author: Neil A. Gershenfeld
Publisher: Cambridge University Press
ISBN: 9780521570954
Category : Mathematics
Languages : en
Pages : 268

Get Book Here

Book Description
This is a book about the nature of mathematical modeling, and about the kinds of techniques that are useful for modeling. The text is in four sections. The first covers exact and approximate analytical techniques; the second, numerical methods; the third, model inference based on observations; and the last, the special role of time in modeling. Each of the topics in the book would be the worthy subject of a dedicated text, but only by presenting the material in this way is it possible to make so much material accessible to so many people. Each chapter presents a concise summary of the core results in an area. The text is complemented by extensive worked problems.

Mathematical and Experimental Modeling of Physical and Biological Processes

Mathematical and Experimental Modeling of Physical and Biological Processes PDF Author: H.T. Banks
Publisher: CRC Press
ISBN: 9781420073386
Category : Mathematics
Languages : en
Pages : 298

Get Book Here

Book Description
Through several case study problems from industrial and scientific research laboratory applications, Mathematical and Experimental Modeling of Physical and Biological Processes provides students with a fundamental understanding of how mathematics is applied to problems in science and engineering. For each case study problem, the authors discuss why a model is needed and what goals can be achieved with the model. Exploring what mathematics can reveal about applications, the book focuses on the design of appropriate experiments to validate the development of mathematical models. It guides students through the modeling process, from empirical observations and formalization of properties to model analysis and interpretation of results. The authors also describe the hardware and software tools used to design the experiments so faculty/students can duplicate them. Integrating real-world applications into the traditional mathematics curriculum, this textbook deals with the formulation and analysis of mathematical models in science and engineering. It gives students an appreciation of the use of mathematics and encourages them to further study the applied topics. Real experimental data for projects can be downloaded from CRC Press Online.

An Introduction to Mathematical Modeling

An Introduction to Mathematical Modeling PDF Author: J. Tinsley Oden
Publisher: John Wiley & Sons
ISBN: 1118105745
Category : Mathematics
Languages : en
Pages : 348

Get Book Here

Book Description
A modern approach to mathematical modeling, featuring unique applications from the field of mechanics An Introduction to Mathematical Modeling: A Course in Mechanics is designed to survey the mathematical models that form the foundations of modern science and incorporates examples that illustrate how the most successful models arise from basic principles in modern and classical mathematical physics. Written by a world authority on mathematical theory and computational mechanics, the book presents an account of continuum mechanics, electromagnetic field theory, quantum mechanics, and statistical mechanics for readers with varied backgrounds in engineering, computer science, mathematics, and physics. The author streamlines a comprehensive understanding of the topic in three clearly organized sections: Nonlinear Continuum Mechanics introduces kinematics as well as force and stress in deformable bodies; mass and momentum; balance of linear and angular momentum; conservation of energy; and constitutive equations Electromagnetic Field Theory and Quantum Mechanics contains a brief account of electromagnetic wave theory and Maxwell's equations as well as an introductory account of quantum mechanics with related topics including ab initio methods and Spin and Pauli's principles Statistical Mechanics presents an introduction to statistical mechanics of systems in thermodynamic equilibrium as well as continuum mechanics, quantum mechanics, and molecular dynamics Each part of the book concludes with exercise sets that allow readers to test their understanding of the presented material. Key theorems and fundamental equations are highlighted throughout, and an extensive bibliography outlines resources for further study. Extensively class-tested to ensure an accessible presentation, An Introduction to Mathematical Modeling is an excellent book for courses on introductory mathematical modeling and statistical mechanics at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for professionals working in the areas of modeling and simulation, physics, and computational engineering.

Mathematical Modeling of Natural Phenomena

Mathematical Modeling of Natural Phenomena PDF Author: Ranis Ibragimov
Publisher:
ISBN: 9781536129779
Category : Differential equations
Languages : en
Pages : 0

Get Book Here

Book Description
Mathematical modeling in the form of differential equations is a branch of applied mathematics that includes topics from physics, engineering, environmental and computer science. The mathematical model is an approximate description of real processes. Mathematical modeling can be thought of as a three step process: 1) Physical situation; 2) Mathematical formulation; 3) Solution by purely operations of the mathematical problem; 4) Physical interpretation of the mathematical solution. Over the centuries, Step 2 took on a life of its own. Mathematics was studied on its own, devoid of any contact with a physical problem; this is known as pure mathematics. Applied mathematics and mathematical modeling deals with all three steps. Improvements of approximations or their extensions to more general situations may increase the complexity of mathematical models significantly. Before the 18th century, applied mathematics and its methods received the close attention of the best mathematicians who were driven by a desire to develop approximate descriptions of natural phenomena. The goal of asymptotic and perturbation methods is to find useful, approximate solutions to difficult problems that arise from the desire to understand a physical process. Exact solutions are usually either impossible to obtain or too complicated to be useful. Approximate, useful solutions are often tested by comparison with experiments or observations rather than by rigorous mathematical methods. Hence, the authors will not be concerned with rigorous proofs in this book. The derivation of approximate solutions can be done in two different ways. First, one can find an approximate set of equations that can be solved, or, one can find an approximate solution of a set of equations. Usually one must do both. Models of natural science show that the possibilities of applying differential equations for solving problems in the disciplines of the natural scientific cycle are quite wide. This book represents a unique blend of the traditional analytical and numerical methods enriched by the authors developments and applications to ocean and atmospheric sciences. The overall viewpoint taken is a theoretical, unified approach to the study of both the atmosphere and the oceans. One of the key features in this book is the combination of approximate forms of the basic mathematical equations of mathematical modeling with careful and precise analysis. The approximations are required to make any progress possible, while precision is needed to make the progress meaningful. This combination is often the most elusive for student to appreciate. This book aims to highlight this issue by means of accurate derivation of mathematical models with precise analysis and MATLAB applications. This book is meant for undergraduate and graduate students interested in applied mathematics, differential equations and mathematical modeling of real world problems. This book might also be interested in experts working in the field of physics concerning the ocean and atmosphere.

Mathematical Modeling in Optical Science

Mathematical Modeling in Optical Science PDF Author: Gang Bao
Publisher: SIAM
ISBN: 0898714753
Category : Science
Languages : en
Pages : 344

Get Book Here

Book Description
This volume addresses recent developments in mathematical modeling in three areas of optical science: diffractive optics, photonic band gap structures, and waveguides. Particular emphasis is on the formulation of mathematical models and the design and analysis of new computational approaches. The book contains cutting-edge discourses on emerging technology in optics that provides significant challenges and opportunities for applied mathematicians, researchers, and engineers. Each of the three topics is presented through a series of survey papers to provide a broad overview focusing on the mathematical models. Chapters present model problems, physical principles, mathematical and computational approaches, and engineering applications corresponding to each of the three areas. Although some of the subject matter is classical, the topics presented are new and represent the latest developments in their respective fields.