Author: Ravinder R. Puri
Publisher: Springer
ISBN: 3540449531
Category : Science
Languages : en
Pages : 291
Book Description
Starting from first principles, this reference treats the theoretical aspects of quantum optics. It develops a unified approach for determining the dynamics of a two-level and three-level atom in combinations of quantized field under certain conditions.
Mathematical Methods of Quantum Optics
Author: Ravinder R. Puri
Publisher: Springer
ISBN: 3540449531
Category : Science
Languages : en
Pages : 291
Book Description
Starting from first principles, this reference treats the theoretical aspects of quantum optics. It develops a unified approach for determining the dynamics of a two-level and three-level atom in combinations of quantized field under certain conditions.
Publisher: Springer
ISBN: 3540449531
Category : Science
Languages : en
Pages : 291
Book Description
Starting from first principles, this reference treats the theoretical aspects of quantum optics. It develops a unified approach for determining the dynamics of a two-level and three-level atom in combinations of quantized field under certain conditions.
Mathematical Optics
Author: Vasudevan Lakshminarayanan
Publisher: CRC Press
ISBN: 143986960X
Category : Science
Languages : en
Pages : 632
Book Description
Going beyond standard introductory texts, Mathematical Optics: Classical, Quantum, and Computational Methods brings together many new mathematical techniques from optical science and engineering research. Profusely illustrated, the book makes the material accessible to students and newcomers to the field. Divided into six parts, the text presents state-of-the-art mathematical methods and applications in classical optics, quantum optics, and image processing. Part I describes the use of phase space concepts to characterize optical beams and the application of dynamic programming in optical waveguides. Part II explores solutions to paraxial, linear, and nonlinear wave equations. Part III discusses cutting-edge areas in transformation optics (such as invisibility cloaks) and computational plasmonics. Part IV uses Lorentz groups, dihedral group symmetry, Lie algebras, and Liouville space to analyze problems in polarization, ray optics, visual optics, and quantum optics. Part V examines the role of coherence functions in modern laser physics and explains how to apply quantum memory channel models in quantum computers. Part VI introduces super-resolution imaging and differential geometric methods in image processing. As numerical/symbolic computation is an important tool for solving numerous real-life problems in optical science, many chapters include Mathematica® code in their appendices. The software codes and notebooks as well as color versions of the book’s figures are available at www.crcpress.com.
Publisher: CRC Press
ISBN: 143986960X
Category : Science
Languages : en
Pages : 632
Book Description
Going beyond standard introductory texts, Mathematical Optics: Classical, Quantum, and Computational Methods brings together many new mathematical techniques from optical science and engineering research. Profusely illustrated, the book makes the material accessible to students and newcomers to the field. Divided into six parts, the text presents state-of-the-art mathematical methods and applications in classical optics, quantum optics, and image processing. Part I describes the use of phase space concepts to characterize optical beams and the application of dynamic programming in optical waveguides. Part II explores solutions to paraxial, linear, and nonlinear wave equations. Part III discusses cutting-edge areas in transformation optics (such as invisibility cloaks) and computational plasmonics. Part IV uses Lorentz groups, dihedral group symmetry, Lie algebras, and Liouville space to analyze problems in polarization, ray optics, visual optics, and quantum optics. Part V examines the role of coherence functions in modern laser physics and explains how to apply quantum memory channel models in quantum computers. Part VI introduces super-resolution imaging and differential geometric methods in image processing. As numerical/symbolic computation is an important tool for solving numerous real-life problems in optical science, many chapters include Mathematica® code in their appendices. The software codes and notebooks as well as color versions of the book’s figures are available at www.crcpress.com.
Statistical Methods in Quantum Optics 1
Author: Howard J. Carmichael
Publisher: Springer Science & Business Media
ISBN: 3662038757
Category : Science
Languages : en
Pages : 384
Book Description
This is the first of a two-volume presentation on current research problems in quantum optics, and will serve as a standard reference in the field for many years to come. The book provides an introduction to the methods of quantum statistical mechanics used in quantum optics and their application to the quantum theories of the single-mode laser and optical bistability. The generalized representations of Drummond and Gardiner are discussed together with the more standard methods for deriving Fokker-Planck equations.
Publisher: Springer Science & Business Media
ISBN: 3662038757
Category : Science
Languages : en
Pages : 384
Book Description
This is the first of a two-volume presentation on current research problems in quantum optics, and will serve as a standard reference in the field for many years to come. The book provides an introduction to the methods of quantum statistical mechanics used in quantum optics and their application to the quantum theories of the single-mode laser and optical bistability. The generalized representations of Drummond and Gardiner are discussed together with the more standard methods for deriving Fokker-Planck equations.
Mathematical Methods of Quantum Optics
Author: Ravinder R. Puri
Publisher: Springer Science & Business Media
ISBN: 9783540678021
Category : Mathematics
Languages : en
Pages : 312
Book Description
Starting from first principles, this reference treats the theoretical aspects of quantum optics. It develops a unified approach for determining the dynamics of a two-level and three-level atom in combinations of quantized field under certain conditions.
Publisher: Springer Science & Business Media
ISBN: 9783540678021
Category : Mathematics
Languages : en
Pages : 312
Book Description
Starting from first principles, this reference treats the theoretical aspects of quantum optics. It develops a unified approach for determining the dynamics of a two-level and three-level atom in combinations of quantized field under certain conditions.
Methods in Theoretical Quantum Optics
Author: Stephen Barnett
Publisher: Oxford University Press
ISBN: 9780198563617
Category : Mathematics
Languages : en
Pages : 302
Book Description
This work presents the mathematical methods widely used by workers in the field of quantum optics. It deals with the physical assumptions which lead to the models and approximations employed, but the main purpose of the text is to give a firm grounding in those techniques needed to derive analytical solutions to problems.
Publisher: Oxford University Press
ISBN: 9780198563617
Category : Mathematics
Languages : en
Pages : 302
Book Description
This work presents the mathematical methods widely used by workers in the field of quantum optics. It deals with the physical assumptions which lead to the models and approximations employed, but the main purpose of the text is to give a firm grounding in those techniques needed to derive analytical solutions to problems.
Mathematical Methods for Optical Physics and Engineering
Author: Gregory J. Gbur
Publisher: Cambridge University Press
ISBN: 1139492691
Category : Science
Languages : en
Pages : 819
Book Description
The first textbook on mathematical methods focusing on techniques for optical science and engineering, this text is ideal for upper division undergraduate and graduate students in optical physics. Containing detailed sections on the basic theory, the textbook places strong emphasis on connecting the abstract mathematical concepts to the optical systems to which they are applied. It covers many topics which usually only appear in more specialized books, such as Zernike polynomials, wavelet and fractional Fourier transforms, vector spherical harmonics, the z-transform, and the angular spectrum representation. Most chapters end by showing how the techniques covered can be used to solve an optical problem. Essay problems based on research publications and numerous exercises help to further strengthen the connection between the theory and its applications.
Publisher: Cambridge University Press
ISBN: 1139492691
Category : Science
Languages : en
Pages : 819
Book Description
The first textbook on mathematical methods focusing on techniques for optical science and engineering, this text is ideal for upper division undergraduate and graduate students in optical physics. Containing detailed sections on the basic theory, the textbook places strong emphasis on connecting the abstract mathematical concepts to the optical systems to which they are applied. It covers many topics which usually only appear in more specialized books, such as Zernike polynomials, wavelet and fractional Fourier transforms, vector spherical harmonics, the z-transform, and the angular spectrum representation. Most chapters end by showing how the techniques covered can be used to solve an optical problem. Essay problems based on research publications and numerous exercises help to further strengthen the connection between the theory and its applications.
Statistical Methods in Quantum Optics 2
Author: Howard J. Carmichael
Publisher: Springer Science & Business Media
ISBN: 3540713204
Category : Science
Languages : en
Pages : 551
Book Description
This second volume of Howard Carmichael’s work continues the development of the methods used in quantum optics to treat open quantum systems and their fluctuations. Its early chapters build upon the phase-space methods introduced in Volume 1. Written on a level suitable for debut researchers or students in an advanced course in quantum optics, or a course in quantum mechanics or statistical physics that deals with open quantum systems.
Publisher: Springer Science & Business Media
ISBN: 3540713204
Category : Science
Languages : en
Pages : 551
Book Description
This second volume of Howard Carmichael’s work continues the development of the methods used in quantum optics to treat open quantum systems and their fluctuations. Its early chapters build upon the phase-space methods introduced in Volume 1. Written on a level suitable for debut researchers or students in an advanced course in quantum optics, or a course in quantum mechanics or statistical physics that deals with open quantum systems.
Quantum Optics
Author: D.F. Walls
Publisher: Springer Science & Business Media
ISBN: 3642795048
Category : Science
Languages : en
Pages : 356
Book Description
Quantum Optics gives a comprehensive coverage of developments in quantum optics over the past twenty years. In the early chapters the formalism of quantum optics is elucidated and the main techniques are introduced. These are applied in the later chapters to problems such as squeezed states of light, resonance fluorescence, laser theory, quantum theory of four-wave mixing, quantum non-demolition measurements, Bell's inequalities, and atom optics. Experimental results are used to illustrate the theory throughout. This yields the most comprehensive and up-to-date coverage of experiment and theory in quantum optics in any textbook.
Publisher: Springer Science & Business Media
ISBN: 3642795048
Category : Science
Languages : en
Pages : 356
Book Description
Quantum Optics gives a comprehensive coverage of developments in quantum optics over the past twenty years. In the early chapters the formalism of quantum optics is elucidated and the main techniques are introduced. These are applied in the later chapters to problems such as squeezed states of light, resonance fluorescence, laser theory, quantum theory of four-wave mixing, quantum non-demolition measurements, Bell's inequalities, and atom optics. Experimental results are used to illustrate the theory throughout. This yields the most comprehensive and up-to-date coverage of experiment and theory in quantum optics in any textbook.
Mathematical Methods in Quantum Mechanics
Author: Gerald Teschl
Publisher: American Mathematical Soc.
ISBN: 0821846604
Category : Mathematics
Languages : en
Pages : 322
Book Description
Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).
Publisher: American Mathematical Soc.
ISBN: 0821846604
Category : Mathematics
Languages : en
Pages : 322
Book Description
Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).
Fundamentals of Quantum Optics
Author: John R. Klauder
Publisher: Courier Corporation
ISBN: 0486450082
Category : Science
Languages : en
Pages : 306
Book Description
This graduate-level text surveys the fundamentals of quantum optics, including the quantum theory of partial coherence and the nature of the relations between classical and quantum theories of coherence.1968 edition.
Publisher: Courier Corporation
ISBN: 0486450082
Category : Science
Languages : en
Pages : 306
Book Description
This graduate-level text surveys the fundamentals of quantum optics, including the quantum theory of partial coherence and the nature of the relations between classical and quantum theories of coherence.1968 edition.