Mathematical Methods in Queuing Theory

Mathematical Methods in Queuing Theory PDF Author: Vladimir V. Kalashnikov
Publisher: Springer Science & Business Media
ISBN: 9780792325680
Category : Mathematics
Languages : en
Pages : 402

Get Book Here

Book Description
The material of this book is based on several courses which have been delivered for a long time at the Moscow Institute for Physics and Technology. Some parts have formed the subject of lectures given at various universities throughout the world: Freie Universitat of Berlin, Chalmers University of Technology and the University of Goteborg, University of California at Santa Barbara and others. The subject of the book is the theory of queues. This theory, as a mathematical discipline, begins with the work of A. Erlang, who examined a model of a telephone station and obtained the famous formula for the distribution of the number of busy lines which is named after him. Queueing theory has been applied to the study of numerous models: emergency aid, road traffic, computer systems, etc. Besides, it has lead to several related disciplines such as reliability and inventory theories which deal with similar models. Nevertheless, many parts of the theory of queues were developed as a "pure science" with no practical applications. The aim of this book is to give the reader an insight into the mathematical methods which can be used in queueing theory and to present examples of solving problems with the help of these methods. Of course, the choice of the methods is quite subjective. Thus, many prominent results have not even been mentioned.

Mathematical Methods in Queuing Theory

Mathematical Methods in Queuing Theory PDF Author: Vladimir V. Kalashnikov
Publisher: Springer Science & Business Media
ISBN: 9780792325680
Category : Mathematics
Languages : en
Pages : 402

Get Book Here

Book Description
The material of this book is based on several courses which have been delivered for a long time at the Moscow Institute for Physics and Technology. Some parts have formed the subject of lectures given at various universities throughout the world: Freie Universitat of Berlin, Chalmers University of Technology and the University of Goteborg, University of California at Santa Barbara and others. The subject of the book is the theory of queues. This theory, as a mathematical discipline, begins with the work of A. Erlang, who examined a model of a telephone station and obtained the famous formula for the distribution of the number of busy lines which is named after him. Queueing theory has been applied to the study of numerous models: emergency aid, road traffic, computer systems, etc. Besides, it has lead to several related disciplines such as reliability and inventory theories which deal with similar models. Nevertheless, many parts of the theory of queues were developed as a "pure science" with no practical applications. The aim of this book is to give the reader an insight into the mathematical methods which can be used in queueing theory and to present examples of solving problems with the help of these methods. Of course, the choice of the methods is quite subjective. Thus, many prominent results have not even been mentioned.

Mathematical Methods in Queuing Theory

Mathematical Methods in Queuing Theory PDF Author: Vladimir V. Kalashnikov
Publisher: Springer Science & Business Media
ISBN: 9401721971
Category : Mathematics
Languages : en
Pages : 389

Get Book Here

Book Description
The material of this book is based on several courses which have been delivered for a long time at the Moscow Institute for Physics and Technology. Some parts have formed the subject of lectures given at various universities throughout the world: Freie Universitat of Berlin, Chalmers University of Technology and the University of Goteborg, University of California at Santa Barbara and others. The subject of the book is the theory of queues. This theory, as a mathematical discipline, begins with the work of A. Erlang, who examined a model of a telephone station and obtained the famous formula for the distribution of the number of busy lines which is named after him. Queueing theory has been applied to the study of numerous models: emergency aid, road traffic, computer systems, etc. Besides, it has lead to several related disciplines such as reliability and inventory theories which deal with similar models. Nevertheless, many parts of the theory of queues were developed as a "pure science" with no practical applications. The aim of this book is to give the reader an insight into the mathematical methods which can be used in queueing theory and to present examples of solving problems with the help of these methods. Of course, the choice of the methods is quite subjective. Thus, many prominent results have not even been mentioned.

An Introduction to Queueing Theory

An Introduction to Queueing Theory PDF Author: L. Breuer
Publisher: Springer Science & Business Media
ISBN: 1402036310
Category : Mathematics
Languages : en
Pages : 274

Get Book Here

Book Description
The present textbook contains the recordsof a two–semester course on que- ing theory, including an introduction to matrix–analytic methods. This course comprises four hours oflectures and two hours of exercises per week andhas been taughtattheUniversity of Trier, Germany, for about ten years in - quence. The course is directed to last year undergraduate and?rst year gr- uate students of applied probability and computer science, who have already completed an introduction to probability theory. Its purpose is to present - terial that is close enough to concrete queueing models and their applications, while providing a sound mathematical foundation for the analysis of these. Thus the goal of the present book is two–fold. On the one hand, students who are mainly interested in applications easily feel bored by elaborate mathematical questions in the theory of stochastic processes. The presentation of the mathematical foundations in our courses is chosen to cover only the necessary results, which are needed for a solid foundation of the methods of queueing analysis. Further, students oriented - wards applications expect to have a justi?cation for their mathematical efforts in terms of immediate use in queueing analysis. This is the main reason why we have decided to introduce new mathematical concepts only when they will be used in the immediate sequel. On the other hand, students of applied probability do not want any heur- tic derivations just for the sake of yielding fast results for the model at hand.

Mathematical Methods in Queueing Theory

Mathematical Methods in Queueing Theory PDF Author: A. Bruce Clarke
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 396

Get Book Here

Book Description


An Introduction to Queueing Theory

An Introduction to Queueing Theory PDF Author: U. Narayan Bhat
Publisher: Birkhäuser
ISBN: 0817684212
Category : Mathematics
Languages : en
Pages : 343

Get Book Here

Book Description
This introductory textbook is designed for a one-semester course on queueing theory that does not require a course on stochastic processes as a prerequisite. By integrating the necessary background on stochastic processes with the analysis of models, the work provides a sound foundational introduction to the modeling and analysis of queueing systems for a broad interdisciplinary audience of students in mathematics, statistics, and applied disciplines such as computer science, operations research, and engineering. This edition includes additional topics in methodology and applications. Key features: • An introductory chapter including a historical account of the growth of queueing theory in more than 100 years. • A modeling-based approach with emphasis on identification of models • Rigorous treatment of the foundations of basic models commonly used in applications with appropriate references for advanced topics. • A chapter on matrix-analytic method as an alternative to the traditional methods of analysis of queueing systems. • A comprehensive treatment of statistical inference for queueing systems. • Modeling exercises and review exercises when appropriate. The second edition of An Introduction of Queueing Theory may be used as a textbook by first-year graduate students in fields such as computer science, operations research, industrial and systems engineering, as well as related fields such as manufacturing and communications engineering. Upper-level undergraduate students in mathematics, statistics, and engineering may also use the book in an introductory course on queueing theory. With its rigorous coverage of basic material and extensive bibliography of the queueing literature, the work may also be useful to applied scientists and practitioners as a self-study reference for applications and further research. "...This book has brought a freshness and novelty as it deals mainly with modeling and analysis in applications as well as with statistical inference for queueing problems. With his 40 years of valuable experience in teaching and high level research in this subject area, Professor Bhat has been able to achieve what he aimed: to make [the work] somewhat different in content and approach from other books." - Assam Statistical Review of the first edition

Mathematical Techniques of Operational Research

Mathematical Techniques of Operational Research PDF Author: L. S. Goddard
Publisher: Elsevier
ISBN: 1483180603
Category : Mathematics
Languages : en
Pages : 241

Get Book Here

Book Description
Mathematical Techniques of Operational Research is a seven-chapter text that covers the principles and applications of various mathematical tools and models to for operational research. Chapter I provides the basic mathematical ideas used in later chapters. Chapters II and III deal with linear programming, including the special cases of transportation and assignment, as well as their applications such as the Trim Problem. Chapters IV and V discuss the theory of queues and describe the general stationary properties of the single-channel queue, and of simple queues in series and in parallel. These chapters also examine some transient properties of queues. Chapter VI focuses on machine interference, which is an aspect of queueing theory, while Chapter VII deals with the important and mathematically subject of Stock Control or Inventory Theory. This book is intended primarily to graduate mathematicians, business manages, and industrial leaders.

Elements of Queueing Theory, with Applications

Elements of Queueing Theory, with Applications PDF Author: Thomas L. Saaty
Publisher: Dover Publications
ISBN:
Category : Mathematics
Languages : en
Pages : 456

Get Book Here

Book Description


Stochastic Models in Queueing Theory

Stochastic Models in Queueing Theory PDF Author: Jyotiprasad Medhi
Publisher: Elsevier
ISBN: 008054181X
Category : Mathematics
Languages : en
Pages : 501

Get Book Here

Book Description
This is a graduate level textbook that covers the fundamental topics in queuing theory. The book has a broad coverage of methods to calculate important probabilities, and gives attention to proving the general theorems. It includes many recent topics, such as server-vacation models, diffusion approximations and optimal operating policies, and more about bulk-arrival and bull-service models than other general texts. - Current, clear and comprehensive coverage - A wealth of interesting and relevant examples and exercises to reinforce concepts - Reference lists provided after each chapter for further investigation

Mathematical Methods in Queuing Theory

Mathematical Methods in Queuing Theory PDF Author: Vladimir V. Kalashnikov
Publisher: Springer
ISBN: 9789401721981
Category : Mathematics
Languages : en
Pages : 382

Get Book Here

Book Description
The material of this book is based on several courses which have been delivered for a long time at the Moscow Institute for Physics and Technology. Some parts have formed the subject of lectures given at various universities throughout the world: Freie Universitat of Berlin, Chalmers University of Technology and the University of Goteborg, University of California at Santa Barbara and others. The subject of the book is the theory of queues. This theory, as a mathematical discipline, begins with the work of A. Erlang, who examined a model of a telephone station and obtained the famous formula for the distribution of the number of busy lines which is named after him. Queueing theory has been applied to the study of numerous models: emergency aid, road traffic, computer systems, etc. Besides, it has lead to several related disciplines such as reliability and inventory theories which deal with similar models. Nevertheless, many parts of the theory of queues were developed as a "pure science" with no practical applications. The aim of this book is to give the reader an insight into the mathematical methods which can be used in queueing theory and to present examples of solving problems with the help of these methods. Of course, the choice of the methods is quite subjective. Thus, many prominent results have not even been mentioned.

Fundamentals of Queuing Systems

Fundamentals of Queuing Systems PDF Author: Nick T. Thomopoulos
Publisher: Springer Science & Business Media
ISBN: 146143713X
Category : Business & Economics
Languages : en
Pages : 187

Get Book Here

Book Description
Waiting in lines is a staple of everyday human life. Without really noticing, we are doing it when we go to buy a ticket at a movie theater, stop at a bank to make an account withdrawal, or proceed to checkout a purchase from one of our favorite department stores. Oftentimes, waiting lines are due to overcrowded, overfilling, or congestion; any time there is more customer demand for a service than can be provided, a waiting line forms. Queuing systems is a term used to describe the methods and techniques most ideal for measuring the probability and statistics of a wide variety of waiting line models. This book provides an introduction to basic queuing systems, such as M/M/1 and its variants, as well as newer concepts like systems with priorities, networks of queues, and general service policies. Numerical examples are presented to guide readers into thinking about practical real-world applications, and students and researchers will be able to apply the methods learned to designing queuing systems that extend beyond the classroom. Very little has been published in the area of queuing systems, and this volume will appeal to graduate-level students, researchers, and practitioners in the areas of management science, applied mathematics, engineering, computer science, and statistics.