Mathematical Methods in Aerodynamics

Mathematical Methods in Aerodynamics PDF Author: Lazãr Dragos
Publisher: Springer Science & Business Media
ISBN: 9781402016639
Category : Mathematics
Languages : en
Pages : 626

Get Book Here

Book Description
The book provides a solid and unitary mathematical foundation of the basic and advanced principles of aerodynamics. The densities of the fundamental solutions are determined from singular integral equations. The fundamental solutions method in aerodynamics was considered for the first time and used by the author in over 30 papers published in prestigious journals (e.g. QAM, AIAA, ZAMM, etc) in order to develop a unitary theory. The boundary element method is used for numerical approximations in compressible aerodynamics. The text incorporates several original contributions, among other traditional mathematical methods. The book also represents a comprehensive presentation of research results since the seminal books on aerodynamics of Ashley and Landahl (1965) and Katz & Plotkin (1991). A rigorous mathematical approach is used to present and explain classic and modern results in this field of science. The author has therefore conceived several appendices on the Distribution Theory, the singular Integral Equations Theory, the Finite Part, Gauss Quadrature Formulae, etc. The book is concluded by a relevant bibliographical list which is especially useful for researchers. The book is aimed primarily at applied mathematicians, aeronautical engineers and space science researchers. The text may be used also as a comprehensive introduction to the mathematical foundations fo aerodynamics, by graduate students n engineering and fluid dynamics with a strong mathematical background.

Mathematical Methods in Aerodynamics

Mathematical Methods in Aerodynamics PDF Author: Lazãr Dragos
Publisher: Springer Science & Business Media
ISBN: 9781402016639
Category : Mathematics
Languages : en
Pages : 626

Get Book Here

Book Description
The book provides a solid and unitary mathematical foundation of the basic and advanced principles of aerodynamics. The densities of the fundamental solutions are determined from singular integral equations. The fundamental solutions method in aerodynamics was considered for the first time and used by the author in over 30 papers published in prestigious journals (e.g. QAM, AIAA, ZAMM, etc) in order to develop a unitary theory. The boundary element method is used for numerical approximations in compressible aerodynamics. The text incorporates several original contributions, among other traditional mathematical methods. The book also represents a comprehensive presentation of research results since the seminal books on aerodynamics of Ashley and Landahl (1965) and Katz & Plotkin (1991). A rigorous mathematical approach is used to present and explain classic and modern results in this field of science. The author has therefore conceived several appendices on the Distribution Theory, the singular Integral Equations Theory, the Finite Part, Gauss Quadrature Formulae, etc. The book is concluded by a relevant bibliographical list which is especially useful for researchers. The book is aimed primarily at applied mathematicians, aeronautical engineers and space science researchers. The text may be used also as a comprehensive introduction to the mathematical foundations fo aerodynamics, by graduate students n engineering and fluid dynamics with a strong mathematical background.

Variational Analysis and Aerospace Engineering

Variational Analysis and Aerospace Engineering PDF Author: Aldo Frediani
Publisher: Springer
ISBN: 3319456806
Category : Mathematics
Languages : en
Pages : 535

Get Book Here

Book Description
This book presents papers surrounding the extensive discussions that took place from the ‘Variational Analysis and Aerospace Engineering’ workshop held at the Ettore Majorana Foundation and Centre for Scientific Culture in 2015. Contributions to this volume focus on advanced mathematical methods in aerospace engineering and industrial engineering such as computational fluid dynamics methods, optimization methods in aerodynamics, optimum controls, dynamic systems, the theory of structures, space missions, flight mechanics, control theory, algebraic geometry for CAD applications, and variational methods and applications. Advanced graduate students, researchers, and professionals in mathematics and engineering will find this volume useful as it illustrates current collaborative research projects in applied mathematics and aerospace engineering.

Computational Aerodynamics

Computational Aerodynamics PDF Author: Antony Jameson
Publisher: Cambridge University Press
ISBN: 1108837883
Category : Science
Languages : en
Pages : 627

Get Book Here

Book Description
Learn the design and analysis of numerical algorithms for aerodynamics. Ideal for graduates, researchers, and professionals in the field.

Theory of Lift

Theory of Lift PDF Author: G. D. McBain
Publisher: John Wiley & Sons
ISBN: 1118346289
Category : Technology & Engineering
Languages : en
Pages : 357

Get Book Here

Book Description
Starting from a basic knowledge of mathematics and mechanics gained in standard foundation classes, Theory of Lift: Introductory Computational Aerodynamics in MATLAB/Octave takes the reader conceptually through from the fundamental mechanics of lift to the stage of actually being able to make practical calculations and predictions of the coefficient of lift for realistic wing profile and planform geometries. The classical framework and methods of aerodynamics are covered in detail and the reader is shown how they may be used to develop simple yet powerful MATLAB or Octave programs that accurately predict and visualise the dynamics of real wing shapes, using lumped vortex, panel, and vortex lattice methods. This book contains all the mathematical development and formulae required in standard incompressible aerodynamics as well as dozens of small but complete working programs which can be put to use immediately using either the popular MATLAB or free Octave computional modelling packages. Key features: Synthesizes the classical foundations of aerodynamics with hands-on computation, emphasizing interactivity and visualization. Includes complete source code for all programs, all listings having been tested for compatibility with both MATLAB and Octave. Companion website (www.wiley.com/go/mcbain) hosting codes and solutions. Theory of Lift: Introductory Computational Aerodynamics in MATLAB/Octave is an introductory text for graduate and senior undergraduate students on aeronautical and aerospace engineering courses and also forms a valuable reference for engineers and designers.

Computational Aerodynamics and Fluid Dynamics

Computational Aerodynamics and Fluid Dynamics PDF Author: Jean-Jacques Chattot
Publisher: Springer Science & Business Media
ISBN: 9783540434948
Category : Mathematics
Languages : en
Pages : 210

Get Book Here

Book Description
The book gives the reader the basis for understanding the way numerical schemes achieve accurate and stable simulations of physical phenomena. It is based on the finite-difference method and simple problems that allow also the analytic solutions to be worked out. ODEs as well as hyperbolic, parabolic and elliptic types are treated. The book builds on simple model equations and, pedagogically, on a host of problems given together with their solutions.

Mathematical Methods of Airfoil Design

Mathematical Methods of Airfoil Design PDF Author: Alexander M. Elizarov
Publisher: Wiley-VCH
ISBN:
Category : Mathematics
Languages : en
Pages : 300

Get Book Here

Book Description
Devoted to the theory of aerodynamic design of subsonic airfoils. It presents the results of more than thirty years research in Russia as well as research by new authors. The state-of-the-art situation in this theory is fully reflected.

Mathematical Methods in Aerodynamics

Mathematical Methods in Aerodynamics PDF Author: Lazãr Dragos
Publisher: Springer
ISBN: 9789401512480
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
The researchers in Aerodynamics know that there is not a unitary method of investigation in this field. The first mathematical model of the air plane wing, the model meaning the integral equation governing the phe nomenon, was proposed by L. Prandtl in 1918. The integral equation deduced by Prandtl, on the basis of some assumptions which will be specified in the sequeL furnishes the circulation C(y) (see Chapter 6). U sing the circulation, one calculates the lift and moment coefficients, which are very important in Aerodynamics. The first hypothesis made by Prandtl consists in replacing the wing by a distribution of vortices on the plan-form D of the wing (i. e. the projection of the wing on the plane determined by the direction of the uniform stream at infinity and t he direction of the span of the wing). Since such a distribution leads to a potential flow in the exterior of D and the experiences show that downstream the flow has not this character, Prandtl introduces as a sup plementary hypothesis another vortices distribution on the trace of the domain D in the uniform stream. The first kind of vortices are called tied vortices and the second kind of vortices are called free vortices.

Flight Dynamics

Flight Dynamics PDF Author: Robert F. Stengel
Publisher: Princeton University Press
ISBN: 0691237042
Category : Science
Languages : en
Pages : 914

Get Book Here

Book Description
An updated and expanded new edition of an authoritative book on flight dynamics and control system design for all types of current and future fixed-wing aircraft Since it was first published, Flight Dynamics has offered a new approach to the science and mathematics of aircraft flight, unifying principles of aeronautics with contemporary systems analysis. Now updated and expanded, this authoritative book by award-winning aeronautics engineer Robert Stengel presents traditional material in the context of modern computational tools and multivariable methods. Special attention is devoted to models and techniques for analysis, simulation, evaluation of flying qualities, and robust control system design. Using common notation and not assuming a strong background in aeronautics, Flight Dynamics will engage a wide variety of readers, including aircraft designers, flight test engineers, researchers, instructors, and students. It introduces principles, derivations, and equations of flight dynamics as well as methods of flight control design with frequent reference to MATLAB functions and examples. Topics include aerodynamics, propulsion, structures, flying qualities, flight control, and the atmospheric and gravitational environment. The second edition of Flight Dynamics features up-to-date examples; a new chapter on control law design for digital fly-by-wire systems; new material on propulsion, aerodynamics of control surfaces, and aeroelastic control; many more illustrations; and text boxes that introduce general mathematical concepts. Features a fluid, progressive presentation that aids informal and self-directed study Provides a clear, consistent notation that supports understanding, from elementary to complicated concepts Offers a comprehensive blend of aerodynamics, dynamics, and control Presents a unified introduction of control system design, from basics to complex methods Includes links to online MATLAB software written by the author that supports the material covered in the book

Aerodynamics of a Lifting System in Extreme Ground Effect

Aerodynamics of a Lifting System in Extreme Ground Effect PDF Author: Kirill V. Rozhdestvensky
Publisher: Springer Science & Business Media
ISBN: 3662042401
Category : Technology & Engineering
Languages : en
Pages : 358

Get Book Here

Book Description
This book is dedicated to the memory of a distinguished Russian engineer, Rostislav E. Alexeyev, who was the first in the world to develop the largest ground effect machine - Ekranoplan. One of Alexeyev's design concepts with the aerodynamic configuration of a jlying wing can be seen on the front page. The book presents a description of a mathematical model of flow past a lifting system, performing steady and unsteady motions in close proximity to the underlying solid surface (ground). This case is interesting for practical purposes because both the aerodynamic and the economic efficiency of the system near the ground are most pronounced. Use of the method of matched asymptotic expansions enables closed form solutions for the aerodynamic characteristics of the wings-in-ground effect. These can be used for design, identification, and processing of experimental data in the course of developing ground effect vehicles. The term extreme ground effect, widely used through out the book, is associated with very small relative ground clearances of the order of 10% or less. The theory of a lifting surface, moving in immediate proximity to the ground, represents one of the few limiting cases that can be treated analytically. The author would like to acknowledge that this work has been influenced by the ideas of Professor Sheila E. Widnall, who was the first to apply the matched asymptotics techniques to treat lifting flows with the ground effect. Saint Petersburg, Russia February 2000 Kirill V. Rozhdestvensky Contents 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Theoretical and Applied Aerodynamics

Theoretical and Applied Aerodynamics PDF Author: J. J. Chattot
Publisher: Springer
ISBN: 9789401777933
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
This book covers classical and modern aerodynamics, theories and related numerical methods, for senior and first-year graduate engineering students, including: -The classical potential (incompressible) flow theories for low speed aerodynamics of thin airfoils and high and low aspect ratio wings. - The linearized theories for compressible subsonic and supersonic aerodynamics. - The nonlinear transonic small disturbance potential flow theory, including supercritical wing sections, the extended transonic area rule with lift effect, transonic lifting line and swept or oblique wings to minimize wave drag. Unsteady flow is also briefly discussed. Numerical simulations based on relaxation mixed-finite difference methods are presented and explained. - Boundary layer theory for all Mach number regimes and viscous/inviscid interaction procedures used in practical aerodynamics calculations. There are also four chapters covering special topics, including wind turbines and propellers, airplane design, flow analogies and hypersonic (rotational) flows. A unique feature of the book is its ten self-tests and their solutions as well as an appendix on special techniques of functions of complex variables, method of characteristics and conservation laws and shock waves. The book is the culmination of two courses taught every year by the two authors for the last two decades to seniors and first-year graduate students of aerospace engineering at UC Davis.