Author: Kenan Taş
Publisher: Springer
ISBN: 9783030081454
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
This book presents recent developments in nonlinear dynamics with an emphasis on complex systems. The volume illustrates new methods to characterize the solutions of nonlinear dynamics associated with complex systems. This book contains the following topics: new solutions of the functional equations, optimization algorithm for traveling salesman problem, fractals, control, fractional calculus models, fractional discretization, local fractional partial differential equations and their applications, and solutions of fractional kinetic equations.
Mathematical Methods in Engineering
Engineering Analysis
Author: Merle C. Potter
Publisher: Springer
ISBN: 3319916831
Category : Technology & Engineering
Languages : en
Pages : 444
Book Description
The purpose of this book is to introduce undergraduate students of engineering and the physical sciences to applied mathematics often essential to the successful solutions of practical problems. The topics selected are a review of Differential Equations, Laplace Transforms, Matrices and Determinants, Vector Analysis, Partial Differential Equations, Complex Variables, and Numerical Methods. The style of presentation is such that the step-by-step derivations may be followed by the reader with minimum assistance. Liberal use of approximately 160 examples and 1000 homework problems serves to aid students in their study. This book presents mathematical topics using derivations (similar to the technique used in engineering textbooks) rather than theorems and proofs typically found in textbooks written by mathematicians. Engineering Analysis is uniquely qualified to help apply mathematics to physical applications (spring-mass systems, electrical circuits, conduction, diffusion, etc.), in a manner as efficient and understandable as possible. This book was written to provide for an additional mathematics course after differential equations, to permit several topics to be introduced in one semester, and to make the material comprehensible to undergraduates.The book comes with an Instructor Solutions Manual, available on request, that provides solutions to all problems and also a Student Solutions Manual that provides solutions to select problems (the answers to which are given at the back of the book).
Publisher: Springer
ISBN: 3319916831
Category : Technology & Engineering
Languages : en
Pages : 444
Book Description
The purpose of this book is to introduce undergraduate students of engineering and the physical sciences to applied mathematics often essential to the successful solutions of practical problems. The topics selected are a review of Differential Equations, Laplace Transforms, Matrices and Determinants, Vector Analysis, Partial Differential Equations, Complex Variables, and Numerical Methods. The style of presentation is such that the step-by-step derivations may be followed by the reader with minimum assistance. Liberal use of approximately 160 examples and 1000 homework problems serves to aid students in their study. This book presents mathematical topics using derivations (similar to the technique used in engineering textbooks) rather than theorems and proofs typically found in textbooks written by mathematicians. Engineering Analysis is uniquely qualified to help apply mathematics to physical applications (spring-mass systems, electrical circuits, conduction, diffusion, etc.), in a manner as efficient and understandable as possible. This book was written to provide for an additional mathematics course after differential equations, to permit several topics to be introduced in one semester, and to make the material comprehensible to undergraduates.The book comes with an Instructor Solutions Manual, available on request, that provides solutions to all problems and also a Student Solutions Manual that provides solutions to select problems (the answers to which are given at the back of the book).
Mathematical Methods in Science and Engineering (Applications in Optics and Photonics) (First Edition)
Author: Masud Mansuripur
Publisher: Cognella Academic Publishing
ISBN: 9781516535897
Category :
Languages : en
Pages :
Book Description
Mathematical Methods in Science and Engineering: Applications in Optics and Photonics helps students build a conceptual appreciation for critical mathematical methods, as well as the physical feel and intuition for select mathematical ideas. Throughout the text, examples are provided from the field of optics and photonics to clarify key concepts. The book features 13 targeted chapters that begin with a brief introduction to the topical area and then dive directly into the subject matter. Students learn about properties of numbers, methods of mathematical reasoning, Euclidean geometry, the fundamentals of complex number theory, and techniques to deal with finite as well as infinite sums and products. Dedicated chapters speak to key concepts of multivariate calculus, the properties of analytic functions of a complex variable, Fourier transformation, methods of solving partial differential equations, the Sturm-Liouville theory, and special functions, including Euler's gamma function, Riemann's zeta function, and the Airy and Bessel functions. Elementary matrix algebra, vector calculus, and probability, random variables, and stochastic processes are addressed. Mathematical Methods in Science and Engineering is well suited for graduate-level courses in optical sciences, physics, and engineering.
Publisher: Cognella Academic Publishing
ISBN: 9781516535897
Category :
Languages : en
Pages :
Book Description
Mathematical Methods in Science and Engineering: Applications in Optics and Photonics helps students build a conceptual appreciation for critical mathematical methods, as well as the physical feel and intuition for select mathematical ideas. Throughout the text, examples are provided from the field of optics and photonics to clarify key concepts. The book features 13 targeted chapters that begin with a brief introduction to the topical area and then dive directly into the subject matter. Students learn about properties of numbers, methods of mathematical reasoning, Euclidean geometry, the fundamentals of complex number theory, and techniques to deal with finite as well as infinite sums and products. Dedicated chapters speak to key concepts of multivariate calculus, the properties of analytic functions of a complex variable, Fourier transformation, methods of solving partial differential equations, the Sturm-Liouville theory, and special functions, including Euler's gamma function, Riemann's zeta function, and the Airy and Bessel functions. Elementary matrix algebra, vector calculus, and probability, random variables, and stochastic processes are addressed. Mathematical Methods in Science and Engineering is well suited for graduate-level courses in optical sciences, physics, and engineering.
Advanced Mathematical Techniques in Engineering Sciences
Author: Mangey Ram
Publisher: CRC Press
ISBN: 1351371886
Category : Mathematics
Languages : en
Pages : 402
Book Description
The goal of this book is to publish the latest mathematical techniques, research, and developments in engineering. This book includes a comprehensive range of mathematics applied in engineering areas for different tasks. Various mathematical tools, techniques, strategies, and methods in engineering applications are covered in each chapter. Mathematical techniques are the strength of engineering sciences and form the common foundation of all novel disciplines within the field. Advanced Mathematical Techniques in Engineering Sciences provides an ample range of mathematical tools and techniques applied across various fields of engineering sciences. Using this book, engineers will gain a greater understanding of the practical applications of mathematics in engineering sciences. Features Covers the mathematical techniques applied in engineering sciences Focuses on the latest research in the field of engineering applications Provides insights on an international and transnational scale Offers new studies and research in modeling and simulation
Publisher: CRC Press
ISBN: 1351371886
Category : Mathematics
Languages : en
Pages : 402
Book Description
The goal of this book is to publish the latest mathematical techniques, research, and developments in engineering. This book includes a comprehensive range of mathematics applied in engineering areas for different tasks. Various mathematical tools, techniques, strategies, and methods in engineering applications are covered in each chapter. Mathematical techniques are the strength of engineering sciences and form the common foundation of all novel disciplines within the field. Advanced Mathematical Techniques in Engineering Sciences provides an ample range of mathematical tools and techniques applied across various fields of engineering sciences. Using this book, engineers will gain a greater understanding of the practical applications of mathematics in engineering sciences. Features Covers the mathematical techniques applied in engineering sciences Focuses on the latest research in the field of engineering applications Provides insights on an international and transnational scale Offers new studies and research in modeling and simulation
Mathematical Methods in Engineering
Author: K. Tas
Publisher: Springer Science & Business Media
ISBN: 1402056788
Category : Technology & Engineering
Languages : en
Pages : 451
Book Description
This book contains some of the contributions that have been carefully selected and peer-reviewed, which were presented at the International Symposium MME06 Mathematical Methods in Engineering, held in Cankaya University, Ankara, April 2006. The Symposium provided a setting for discussing recent developments in Fractional Mathematics, Neutrices and Generalized Functions, Boundary Value Problems, Applications of Wavelets, Dynamical Systems and Control Theory.
Publisher: Springer Science & Business Media
ISBN: 1402056788
Category : Technology & Engineering
Languages : en
Pages : 451
Book Description
This book contains some of the contributions that have been carefully selected and peer-reviewed, which were presented at the International Symposium MME06 Mathematical Methods in Engineering, held in Cankaya University, Ankara, April 2006. The Symposium provided a setting for discussing recent developments in Fractional Mathematics, Neutrices and Generalized Functions, Boundary Value Problems, Applications of Wavelets, Dynamical Systems and Control Theory.
Mathematical Methods in Engineering and Physics
Author: Gary N. Felder
Publisher: John Wiley & Sons
ISBN: 1118449606
Category : Science
Languages : en
Pages : 829
Book Description
This text is intended for the undergraduate course in math methods, with an audience of physics and engineering majors. As a required course in most departments, the text relies heavily on explained examples, real-world applications and student engagement. Supporting the use of active learning, a strong focus is placed upon physical motivation combined with a versatile coverage of topics that can be used as a reference after students complete the course. Each chapter begins with an overview that includes a list of prerequisite knowledge, a list of skills that will be covered in the chapter, and an outline of the sections. Next comes the motivating exercise, which steps the students through a real-world physical problem that requires the techniques taught in each chapter.
Publisher: John Wiley & Sons
ISBN: 1118449606
Category : Science
Languages : en
Pages : 829
Book Description
This text is intended for the undergraduate course in math methods, with an audience of physics and engineering majors. As a required course in most departments, the text relies heavily on explained examples, real-world applications and student engagement. Supporting the use of active learning, a strong focus is placed upon physical motivation combined with a versatile coverage of topics that can be used as a reference after students complete the course. Each chapter begins with an overview that includes a list of prerequisite knowledge, a list of skills that will be covered in the chapter, and an outline of the sections. Next comes the motivating exercise, which steps the students through a real-world physical problem that requires the techniques taught in each chapter.
Essentials of Mathematical Methods in Science and Engineering
Author: Selcuk S. Bayin
Publisher: John Wiley & Sons
ISBN: 1118626168
Category : Mathematics
Languages : en
Pages : 577
Book Description
A complete introduction to the multidisciplinary applications of mathematical methods In order to work with varying levels of engineering and physics research, it is important to have a firm understanding of key mathematical concepts such as advanced calculus, differential equations, complex analysis, and introductory mathematical physics. Essentials of Mathematical Methods in Science and Engineering provides a comprehensive introduction to these methods under one cover, outlining basic mathematical skills while also encouraging students and practitioners to develop new, interdisciplinary approaches to their research. The book begins with core topics from various branches of mathematics such as limits, integrals, and inverse functions. Subsequent chapters delve into the analytical tools that are commonly used in scientific and engineering studies, including vector analysis, generalized coordinates, determinants and matrices, linear algebra, complex numbers, complex analysis, and Fourier series. The author provides an extensive chapter on probability theory with applications to statistical mechanics and thermodynamics that complements the following chapter on information theory, which contains coverage of Shannon's theory, decision theory, game theory, and quantum information theory. A comprehensive list of references facilitates further exploration of these topics. Throughout the book, numerous examples and exercises reinforce the presented concepts and techniques. In addition, the book is in a modular format, so each chapter covers its subject thoroughly and can be read independently. This structure affords flexibility for individualizing courses and teaching. Providing a solid foundation and overview of the various mathematical methods and applications in multidisciplinary research, Essentials of Mathematical Methods in Science and Engineering is an excellent text for courses in physics, science, mathematics, and engineering at the upper-undergraduate and graduate levels. It also serves as a useful reference for scientists and engineers who would like a practical review of mathematical methods.
Publisher: John Wiley & Sons
ISBN: 1118626168
Category : Mathematics
Languages : en
Pages : 577
Book Description
A complete introduction to the multidisciplinary applications of mathematical methods In order to work with varying levels of engineering and physics research, it is important to have a firm understanding of key mathematical concepts such as advanced calculus, differential equations, complex analysis, and introductory mathematical physics. Essentials of Mathematical Methods in Science and Engineering provides a comprehensive introduction to these methods under one cover, outlining basic mathematical skills while also encouraging students and practitioners to develop new, interdisciplinary approaches to their research. The book begins with core topics from various branches of mathematics such as limits, integrals, and inverse functions. Subsequent chapters delve into the analytical tools that are commonly used in scientific and engineering studies, including vector analysis, generalized coordinates, determinants and matrices, linear algebra, complex numbers, complex analysis, and Fourier series. The author provides an extensive chapter on probability theory with applications to statistical mechanics and thermodynamics that complements the following chapter on information theory, which contains coverage of Shannon's theory, decision theory, game theory, and quantum information theory. A comprehensive list of references facilitates further exploration of these topics. Throughout the book, numerous examples and exercises reinforce the presented concepts and techniques. In addition, the book is in a modular format, so each chapter covers its subject thoroughly and can be read independently. This structure affords flexibility for individualizing courses and teaching. Providing a solid foundation and overview of the various mathematical methods and applications in multidisciplinary research, Essentials of Mathematical Methods in Science and Engineering is an excellent text for courses in physics, science, mathematics, and engineering at the upper-undergraduate and graduate levels. It also serves as a useful reference for scientists and engineers who would like a practical review of mathematical methods.
Mathematical Methods in Engineering
Author: Joseph M. Powers
Publisher: Cambridge University Press
ISBN: 1107037042
Category : Mathematics
Languages : en
Pages : 639
Book Description
Designed for engineering graduate students, this book connects basic mathematics to a variety of methods used in engineering problems.
Publisher: Cambridge University Press
ISBN: 1107037042
Category : Mathematics
Languages : en
Pages : 639
Book Description
Designed for engineering graduate students, this book connects basic mathematics to a variety of methods used in engineering problems.
Advanced Mathematical Methods in Science and Engineering
Author: S.I. Hayek
Publisher: CRC Press
ISBN: 1420081985
Category : Mathematics
Languages : en
Pages : 862
Book Description
Classroom-tested, Advanced Mathematical Methods in Science and Engineering, Second Edition presents methods of applied mathematics that are particularly suited to address physical problems in science and engineering. Numerous examples illustrate the various methods of solution and answers to the end-of-chapter problems are included at the back of the book. After introducing integration and solution methods of ordinary differential equations (ODEs), the book presents Bessel and Legendre functions as well as the derivation and methods of solution of linear boundary value problems for physical systems in one spatial dimension governed by ODEs. It also covers complex variables, calculus, and integrals; linear partial differential equations (PDEs) in classical physics and engineering; the derivation of integral transforms; Green’s functions for ODEs and PDEs; asymptotic methods for evaluating integrals; and the asymptotic solution of ODEs. New to this edition, the final chapter offers an extensive treatment of numerical methods for solving non-linear equations, finite difference differentiation and integration, initial value and boundary value ODEs, and PDEs in mathematical physics. Chapters that cover boundary value problems and PDEs contain derivations of the governing differential equations in many fields of applied physics and engineering, such as wave mechanics, acoustics, heat flow in solids, diffusion of liquids and gases, and fluid flow. An update of a bestseller, this second edition continues to give students the strong foundation needed to apply mathematical techniques to the physical phenomena encountered in scientific and engineering applications.
Publisher: CRC Press
ISBN: 1420081985
Category : Mathematics
Languages : en
Pages : 862
Book Description
Classroom-tested, Advanced Mathematical Methods in Science and Engineering, Second Edition presents methods of applied mathematics that are particularly suited to address physical problems in science and engineering. Numerous examples illustrate the various methods of solution and answers to the end-of-chapter problems are included at the back of the book. After introducing integration and solution methods of ordinary differential equations (ODEs), the book presents Bessel and Legendre functions as well as the derivation and methods of solution of linear boundary value problems for physical systems in one spatial dimension governed by ODEs. It also covers complex variables, calculus, and integrals; linear partial differential equations (PDEs) in classical physics and engineering; the derivation of integral transforms; Green’s functions for ODEs and PDEs; asymptotic methods for evaluating integrals; and the asymptotic solution of ODEs. New to this edition, the final chapter offers an extensive treatment of numerical methods for solving non-linear equations, finite difference differentiation and integration, initial value and boundary value ODEs, and PDEs in mathematical physics. Chapters that cover boundary value problems and PDEs contain derivations of the governing differential equations in many fields of applied physics and engineering, such as wave mechanics, acoustics, heat flow in solids, diffusion of liquids and gases, and fluid flow. An update of a bestseller, this second edition continues to give students the strong foundation needed to apply mathematical techniques to the physical phenomena encountered in scientific and engineering applications.
Mathematical Methods for Scientists and Engineers
Author: Donald Allan McQuarrie
Publisher: University Science Books
ISBN: 9781891389245
Category : Mathematics
Languages : en
Pages : 1188
Book Description
"Intended for upper-level undergraduate and graduate courses in chemistry, physics, math and engineering, this book will also become a must-have for the personal library of all advanced students in the physical sciences. Comprised of more than 2000 problems and 700 worked examples that detail every single step, this text is exceptionally well adapted for self study as well as for course use."--From publisher description.
Publisher: University Science Books
ISBN: 9781891389245
Category : Mathematics
Languages : en
Pages : 1188
Book Description
"Intended for upper-level undergraduate and graduate courses in chemistry, physics, math and engineering, this book will also become a must-have for the personal library of all advanced students in the physical sciences. Comprised of more than 2000 problems and 700 worked examples that detail every single step, this text is exceptionally well adapted for self study as well as for course use."--From publisher description.