Author: Al'bert Grigor'evi_ Dragalin
Publisher: American Mathematical Soc.
ISBN: 0821845209
Category : Mathematics
Languages : en
Pages : 242
Book Description
In the area of mathematical logic, a great deal of attention is now being devoted to the study of nonclassical logics. This book intends to present the most important methods of proof theory in intuitionistic logic and to acquaint the reader with the principal axiomatic theories based on intuitionistic logic.
Mathematical Intuitionism: Introduction to Proof Theory
Author: Al'bert Grigor'evi_ Dragalin
Publisher: American Mathematical Soc.
ISBN: 0821845209
Category : Mathematics
Languages : en
Pages : 242
Book Description
In the area of mathematical logic, a great deal of attention is now being devoted to the study of nonclassical logics. This book intends to present the most important methods of proof theory in intuitionistic logic and to acquaint the reader with the principal axiomatic theories based on intuitionistic logic.
Publisher: American Mathematical Soc.
ISBN: 0821845209
Category : Mathematics
Languages : en
Pages : 242
Book Description
In the area of mathematical logic, a great deal of attention is now being devoted to the study of nonclassical logics. This book intends to present the most important methods of proof theory in intuitionistic logic and to acquaint the reader with the principal axiomatic theories based on intuitionistic logic.
Mathematical Intuitionism
Author: Carl J. Posy
Publisher: Cambridge University Press
ISBN: 1108593259
Category : Science
Languages : en
Pages : 116
Book Description
L. E. J. Brouwer, the founder of mathematical intuitionism, believed that mathematics and its objects must be humanly graspable. He initiated a program rebuilding modern mathematics according to that principle. This book introduces the reader to the mathematical core of intuitionism – from elementary number theory through to Brouwer's uniform continuity theorem – and to the two central topics of 'formalized intuitionism': formal intuitionistic logic, and formal systems for intuitionistic analysis. Building on that, the book proposes a systematic, philosophical foundation for intuitionism that weaves together doctrines about human grasp, mathematical objects and mathematical truth.
Publisher: Cambridge University Press
ISBN: 1108593259
Category : Science
Languages : en
Pages : 116
Book Description
L. E. J. Brouwer, the founder of mathematical intuitionism, believed that mathematics and its objects must be humanly graspable. He initiated a program rebuilding modern mathematics according to that principle. This book introduces the reader to the mathematical core of intuitionism – from elementary number theory through to Brouwer's uniform continuity theorem – and to the two central topics of 'formalized intuitionism': formal intuitionistic logic, and formal systems for intuitionistic analysis. Building on that, the book proposes a systematic, philosophical foundation for intuitionism that weaves together doctrines about human grasp, mathematical objects and mathematical truth.
An Introduction to Proof Theory
Author: Paolo Mancosu
Publisher: Oxford University Press
ISBN: 0192649299
Category : Philosophy
Languages : en
Pages : 336
Book Description
An Introduction to Proof Theory provides an accessible introduction to the theory of proofs, with details of proofs worked out and examples and exercises to aid the reader's understanding. It also serves as a companion to reading the original pathbreaking articles by Gerhard Gentzen. The first half covers topics in structural proof theory, including the Gödel-Gentzen translation of classical into intuitionistic logic (and arithmetic), natural deduction and the normalization theorems (for both NJ and NK), the sequent calculus, including cut-elimination and mid-sequent theorems, and various applications of these results. The second half examines ordinal proof theory, specifically Gentzen's consistency proof for first-order Peano Arithmetic. The theory of ordinal notations and other elements of ordinal theory are developed from scratch, and no knowledge of set theory is presumed. The proof methods needed to establish proof-theoretic results, especially proof by induction, are introduced in stages throughout the text. Mancosu, Galvan, and Zach's introduction will provide a solid foundation for those looking to understand this central area of mathematical logic and the philosophy of mathematics.
Publisher: Oxford University Press
ISBN: 0192649299
Category : Philosophy
Languages : en
Pages : 336
Book Description
An Introduction to Proof Theory provides an accessible introduction to the theory of proofs, with details of proofs worked out and examples and exercises to aid the reader's understanding. It also serves as a companion to reading the original pathbreaking articles by Gerhard Gentzen. The first half covers topics in structural proof theory, including the Gödel-Gentzen translation of classical into intuitionistic logic (and arithmetic), natural deduction and the normalization theorems (for both NJ and NK), the sequent calculus, including cut-elimination and mid-sequent theorems, and various applications of these results. The second half examines ordinal proof theory, specifically Gentzen's consistency proof for first-order Peano Arithmetic. The theory of ordinal notations and other elements of ordinal theory are developed from scratch, and no knowledge of set theory is presumed. The proof methods needed to establish proof-theoretic results, especially proof by induction, are introduced in stages throughout the text. Mancosu, Galvan, and Zach's introduction will provide a solid foundation for those looking to understand this central area of mathematical logic and the philosophy of mathematics.
Handbook of Proof Theory
Author: S.R. Buss
Publisher: Elsevier
ISBN: 0080533183
Category : Mathematics
Languages : en
Pages : 823
Book Description
This volume contains articles covering a broad spectrum of proof theory, with an emphasis on its mathematical aspects. The articles should not only be interesting to specialists of proof theory, but should also be accessible to a diverse audience, including logicians, mathematicians, computer scientists and philosophers. Many of the central topics of proof theory have been included in a self-contained expository of articles, covered in great detail and depth.The chapters are arranged so that the two introductory articles come first; these are then followed by articles from core classical areas of proof theory; the handbook concludes with articles that deal with topics closely related to computer science.
Publisher: Elsevier
ISBN: 0080533183
Category : Mathematics
Languages : en
Pages : 823
Book Description
This volume contains articles covering a broad spectrum of proof theory, with an emphasis on its mathematical aspects. The articles should not only be interesting to specialists of proof theory, but should also be accessible to a diverse audience, including logicians, mathematicians, computer scientists and philosophers. Many of the central topics of proof theory have been included in a self-contained expository of articles, covered in great detail and depth.The chapters are arranged so that the two introductory articles come first; these are then followed by articles from core classical areas of proof theory; the handbook concludes with articles that deal with topics closely related to computer science.
Philosophical and Mathematical Logic
Author: Harrie de Swart
Publisher: Springer
ISBN: 3030032558
Category : Philosophy
Languages : en
Pages : 558
Book Description
This book was written to serve as an introduction to logic, with in each chapter – if applicable – special emphasis on the interplay between logic and philosophy, mathematics, language and (theoretical) computer science. The reader will not only be provided with an introduction to classical logic, but to philosophical (modal, epistemic, deontic, temporal) and intuitionistic logic as well. The first chapter is an easy to read non-technical Introduction to the topics in the book. The next chapters are consecutively about Propositional Logic, Sets (finite and infinite), Predicate Logic, Arithmetic and Gödel’s Incompleteness Theorems, Modal Logic, Philosophy of Language, Intuitionism and Intuitionistic Logic, Applications (Prolog; Relational Databases and SQL; Social Choice Theory, in particular Majority Judgment) and finally, Fallacies and Unfair Discussion Methods. Throughout the text, the author provides some impressions of the historical development of logic: Stoic and Aristotelian logic, logic in the Middle Ages and Frege's Begriffsschrift, together with the works of George Boole (1815-1864) and August De Morgan (1806-1871), the origin of modern logic. Since "if ..., then ..." can be considered to be the heart of logic, throughout this book much attention is paid to conditionals: material, strict and relevant implication, entailment, counterfactuals and conversational implicature are treated and many references for further reading are given. Each chapter is concluded with answers to the exercises. Philosophical and Mathematical Logic is a very recent book (2018), but with every aspect of a classic. What a wonderful book! Work written with all the necessary rigor, with immense depth, but without giving up clarity and good taste. Philosophy and mathematics go hand in hand with the most diverse themes of logic. An introductory text, but not only that. It goes much further. It's worth diving into the pages of this book, dear reader! Paulo Sérgio Argolo
Publisher: Springer
ISBN: 3030032558
Category : Philosophy
Languages : en
Pages : 558
Book Description
This book was written to serve as an introduction to logic, with in each chapter – if applicable – special emphasis on the interplay between logic and philosophy, mathematics, language and (theoretical) computer science. The reader will not only be provided with an introduction to classical logic, but to philosophical (modal, epistemic, deontic, temporal) and intuitionistic logic as well. The first chapter is an easy to read non-technical Introduction to the topics in the book. The next chapters are consecutively about Propositional Logic, Sets (finite and infinite), Predicate Logic, Arithmetic and Gödel’s Incompleteness Theorems, Modal Logic, Philosophy of Language, Intuitionism and Intuitionistic Logic, Applications (Prolog; Relational Databases and SQL; Social Choice Theory, in particular Majority Judgment) and finally, Fallacies and Unfair Discussion Methods. Throughout the text, the author provides some impressions of the historical development of logic: Stoic and Aristotelian logic, logic in the Middle Ages and Frege's Begriffsschrift, together with the works of George Boole (1815-1864) and August De Morgan (1806-1871), the origin of modern logic. Since "if ..., then ..." can be considered to be the heart of logic, throughout this book much attention is paid to conditionals: material, strict and relevant implication, entailment, counterfactuals and conversational implicature are treated and many references for further reading are given. Each chapter is concluded with answers to the exercises. Philosophical and Mathematical Logic is a very recent book (2018), but with every aspect of a classic. What a wonderful book! Work written with all the necessary rigor, with immense depth, but without giving up clarity and good taste. Philosophy and mathematics go hand in hand with the most diverse themes of logic. An introductory text, but not only that. It goes much further. It's worth diving into the pages of this book, dear reader! Paulo Sérgio Argolo
Elements of Intuitionism
Author: Michael Dummett
Publisher: Oxford University Press
ISBN: 9780198505242
Category : Mathematics
Languages : en
Pages : 350
Book Description
This is a long-awaited new edition of one of the best known Oxford Logic Guides. The book gives an informal but thorough introduction to intuitionistic mathematics, leading the reader gently through the fundamental mathematical and philosophical concepts. The treatment of various topics has been completely revised for this second edition. Brouwer's proof of the Bar Theorem has been reworked, the account of valuation systems simplified, and the treatment of generalized Beth Trees and the completeness of intuitionistic first-order logic rewritten. Readers are assumed to have some knowledge of classical formal logic and a general awareness of the history of intuitionism.
Publisher: Oxford University Press
ISBN: 9780198505242
Category : Mathematics
Languages : en
Pages : 350
Book Description
This is a long-awaited new edition of one of the best known Oxford Logic Guides. The book gives an informal but thorough introduction to intuitionistic mathematics, leading the reader gently through the fundamental mathematical and philosophical concepts. The treatment of various topics has been completely revised for this second edition. Brouwer's proof of the Bar Theorem has been reworked, the account of valuation systems simplified, and the treatment of generalized Beth Trees and the completeness of intuitionistic first-order logic rewritten. Readers are assumed to have some knowledge of classical formal logic and a general awareness of the history of intuitionism.
An Introduction to Mathematical Logic
Author: Richard E. Hodel
Publisher: Courier Corporation
ISBN: 0486497852
Category : Mathematics
Languages : en
Pages : 514
Book Description
This comprehensive overview ofmathematical logic is designedprimarily for advanced undergraduatesand graduate studentsof mathematics. The treatmentalso contains much of interest toadvanced students in computerscience and philosophy. Topics include propositional logic;first-order languages and logic; incompleteness, undecidability,and indefinability; recursive functions; computability;and Hilbert’s Tenth Problem.Reprint of the PWS Publishing Company, Boston, 1995edition.
Publisher: Courier Corporation
ISBN: 0486497852
Category : Mathematics
Languages : en
Pages : 514
Book Description
This comprehensive overview ofmathematical logic is designedprimarily for advanced undergraduatesand graduate studentsof mathematics. The treatmentalso contains much of interest toadvanced students in computerscience and philosophy. Topics include propositional logic;first-order languages and logic; incompleteness, undecidability,and indefinability; recursive functions; computability;and Hilbert’s Tenth Problem.Reprint of the PWS Publishing Company, Boston, 1995edition.
Lectures on the Philosophy of Mathematics
Author: Joel David Hamkins
Publisher: MIT Press
ISBN: 0262542234
Category : Mathematics
Languages : en
Pages : 350
Book Description
An introduction to the philosophy of mathematics grounded in mathematics and motivated by mathematical inquiry and practice. In this book, Joel David Hamkins offers an introduction to the philosophy of mathematics that is grounded in mathematics and motivated by mathematical inquiry and practice. He treats philosophical issues as they arise organically in mathematics, discussing such topics as platonism, realism, logicism, structuralism, formalism, infinity, and intuitionism in mathematical contexts. He organizes the book by mathematical themes--numbers, rigor, geometry, proof, computability, incompleteness, and set theory--that give rise again and again to philosophical considerations.
Publisher: MIT Press
ISBN: 0262542234
Category : Mathematics
Languages : en
Pages : 350
Book Description
An introduction to the philosophy of mathematics grounded in mathematics and motivated by mathematical inquiry and practice. In this book, Joel David Hamkins offers an introduction to the philosophy of mathematics that is grounded in mathematics and motivated by mathematical inquiry and practice. He treats philosophical issues as they arise organically in mathematics, discussing such topics as platonism, realism, logicism, structuralism, formalism, infinity, and intuitionism in mathematical contexts. He organizes the book by mathematical themes--numbers, rigor, geometry, proof, computability, incompleteness, and set theory--that give rise again and again to philosophical considerations.
Proofs and Ideas
Author: B. Sethuraman
Publisher: American Mathematical Society
ISBN: 1470465140
Category : Mathematics
Languages : en
Pages : 334
Book Description
Proofs and Ideas serves as a gentle introduction to advanced mathematics for students who previously have not had extensive exposure to proofs. It is intended to ease the student's transition from algorithmic mathematics to the world of mathematics that is built around proofs and concepts. The spirit of the book is that the basic tools of abstract mathematics are best developed in context and that creativity and imagination are at the core of mathematics. So, while the book has chapters on statements and sets and functions and induction, the bulk of the book focuses on core mathematical ideas and on developing intuition. Along with chapters on elementary combinatorics and beginning number theory, this book contains introductory chapters on real analysis, group theory, and graph theory that serve as gentle first exposures to their respective areas. The book contains hundreds of exercises, both routine and non-routine. This book has been used for a transition to advanced mathematics courses at California State University, Northridge, as well as for a general education course on mathematical reasoning at Krea University, India.
Publisher: American Mathematical Society
ISBN: 1470465140
Category : Mathematics
Languages : en
Pages : 334
Book Description
Proofs and Ideas serves as a gentle introduction to advanced mathematics for students who previously have not had extensive exposure to proofs. It is intended to ease the student's transition from algorithmic mathematics to the world of mathematics that is built around proofs and concepts. The spirit of the book is that the basic tools of abstract mathematics are best developed in context and that creativity and imagination are at the core of mathematics. So, while the book has chapters on statements and sets and functions and induction, the bulk of the book focuses on core mathematical ideas and on developing intuition. Along with chapters on elementary combinatorics and beginning number theory, this book contains introductory chapters on real analysis, group theory, and graph theory that serve as gentle first exposures to their respective areas. The book contains hundreds of exercises, both routine and non-routine. This book has been used for a transition to advanced mathematics courses at California State University, Northridge, as well as for a general education course on mathematical reasoning at Krea University, India.
Proof Analysis
Author: Sara Negri
Publisher: Cambridge University Press
ISBN: 1139501526
Category : Mathematics
Languages : en
Pages : 279
Book Description
This book continues from where the authors' previous book, Structural Proof Theory, ended. It presents an extension of the methods of analysis of proofs in pure logic to elementary axiomatic systems and to what is known as philosophical logic. A self-contained brief introduction to the proof theory of pure logic is included that serves both the mathematically and philosophically oriented reader. The method is built up gradually, with examples drawn from theories of order, lattice theory and elementary geometry. The aim is, in each of the examples, to help the reader grasp the combinatorial behaviour of an axiom system, which typically leads to decidability results. The last part presents, as an application and extension of all that precedes it, a proof-theoretical approach to the Kripke semantics of modal and related logics, with a great number of new results, providing essential reading for mathematical and philosophical logicians.
Publisher: Cambridge University Press
ISBN: 1139501526
Category : Mathematics
Languages : en
Pages : 279
Book Description
This book continues from where the authors' previous book, Structural Proof Theory, ended. It presents an extension of the methods of analysis of proofs in pure logic to elementary axiomatic systems and to what is known as philosophical logic. A self-contained brief introduction to the proof theory of pure logic is included that serves both the mathematically and philosophically oriented reader. The method is built up gradually, with examples drawn from theories of order, lattice theory and elementary geometry. The aim is, in each of the examples, to help the reader grasp the combinatorial behaviour of an axiom system, which typically leads to decidability results. The last part presents, as an application and extension of all that precedes it, a proof-theoretical approach to the Kripke semantics of modal and related logics, with a great number of new results, providing essential reading for mathematical and philosophical logicians.