Author: Abe Shenitzer
Publisher: American Mathematical Soc.
ISBN: 1470457393
Category : Mathematics
Languages : en
Pages : 319
Book Description
Mathematical Evolutions
Author: Abe Shenitzer
Publisher: American Mathematical Soc.
ISBN: 1470457393
Category : Mathematics
Languages : en
Pages : 319
Book Description
Publisher: American Mathematical Soc.
ISBN: 1470457393
Category : Mathematics
Languages : en
Pages : 319
Book Description
Evolution of Mathematical Concepts
Author: Raymond L. Wilder
Publisher: Courier Corporation
ISBN: 0486490610
Category : Mathematics
Languages : en
Pages : 242
Book Description
Accessible to students and relevant to specialists, this remarkable book by a prominent educator offers a unique perspective on the evolutionary development of mathematics. Rather than conducting a survey of the history or philosophy of mathematics, Raymond L. Wilder envisions mathematics as a broad cultural phenomenon. His treatment examines and illustrates how such concepts as number and length were affected by historic and social events. Starting with a brief consideration of preliminary notions, this study explores the early evolution of numbers, the evolution of geometry, and the conquest of the infinite as embodied by real numbers. A detailed look at the processes of evolution concludes with an examination of the evolutionary aspects of modern mathematics.
Publisher: Courier Corporation
ISBN: 0486490610
Category : Mathematics
Languages : en
Pages : 242
Book Description
Accessible to students and relevant to specialists, this remarkable book by a prominent educator offers a unique perspective on the evolutionary development of mathematics. Rather than conducting a survey of the history or philosophy of mathematics, Raymond L. Wilder envisions mathematics as a broad cultural phenomenon. His treatment examines and illustrates how such concepts as number and length were affected by historic and social events. Starting with a brief consideration of preliminary notions, this study explores the early evolution of numbers, the evolution of geometry, and the conquest of the infinite as embodied by real numbers. A detailed look at the processes of evolution concludes with an examination of the evolutionary aspects of modern mathematics.
Mathematical Models of Social Evolution
Author: Richard McElreath
Publisher: University of Chicago Press
ISBN: 0226558282
Category : Social Science
Languages : en
Pages : 429
Book Description
Over the last several decades, mathematical models have become central to the study of social evolution, both in biology and the social sciences. But students in these disciplines often seriously lack the tools to understand them. A primer on behavioral modeling that includes both mathematics and evolutionary theory, Mathematical Models of Social Evolution aims to make the student and professional researcher in biology and the social sciences fully conversant in the language of the field. Teaching biological concepts from which models can be developed, Richard McElreath and Robert Boyd introduce readers to many of the typical mathematical tools that are used to analyze evolutionary models and end each chapter with a set of problems that draw upon these techniques. Mathematical Models of Social Evolution equips behaviorists and evolutionary biologists with the mathematical knowledge to truly understand the models on which their research depends. Ultimately, McElreath and Boyd’s goal is to impart the fundamental concepts that underlie modern biological understandings of the evolution of behavior so that readers will be able to more fully appreciate journal articles and scientific literature, and start building models of their own.
Publisher: University of Chicago Press
ISBN: 0226558282
Category : Social Science
Languages : en
Pages : 429
Book Description
Over the last several decades, mathematical models have become central to the study of social evolution, both in biology and the social sciences. But students in these disciplines often seriously lack the tools to understand them. A primer on behavioral modeling that includes both mathematics and evolutionary theory, Mathematical Models of Social Evolution aims to make the student and professional researcher in biology and the social sciences fully conversant in the language of the field. Teaching biological concepts from which models can be developed, Richard McElreath and Robert Boyd introduce readers to many of the typical mathematical tools that are used to analyze evolutionary models and end each chapter with a set of problems that draw upon these techniques. Mathematical Models of Social Evolution equips behaviorists and evolutionary biologists with the mathematical knowledge to truly understand the models on which their research depends. Ultimately, McElreath and Boyd’s goal is to impart the fundamental concepts that underlie modern biological understandings of the evolution of behavior so that readers will be able to more fully appreciate journal articles and scientific literature, and start building models of their own.
A Biologist's Guide to Mathematical Modeling in Ecology and Evolution
Author: Sarah P. Otto
Publisher: Princeton University Press
ISBN: 1400840910
Category : Science
Languages : en
Pages : 745
Book Description
Thirty years ago, biologists could get by with a rudimentary grasp of mathematics and modeling. Not so today. In seeking to answer fundamental questions about how biological systems function and change over time, the modern biologist is as likely to rely on sophisticated mathematical and computer-based models as traditional fieldwork. In this book, Sarah Otto and Troy Day provide biology students with the tools necessary to both interpret models and to build their own. The book starts at an elementary level of mathematical modeling, assuming that the reader has had high school mathematics and first-year calculus. Otto and Day then gradually build in depth and complexity, from classic models in ecology and evolution to more intricate class-structured and probabilistic models. The authors provide primers with instructive exercises to introduce readers to the more advanced subjects of linear algebra and probability theory. Through examples, they describe how models have been used to understand such topics as the spread of HIV, chaos, the age structure of a country, speciation, and extinction. Ecologists and evolutionary biologists today need enough mathematical training to be able to assess the power and limits of biological models and to develop theories and models themselves. This innovative book will be an indispensable guide to the world of mathematical models for the next generation of biologists. A how-to guide for developing new mathematical models in biology Provides step-by-step recipes for constructing and analyzing models Interesting biological applications Explores classical models in ecology and evolution Questions at the end of every chapter Primers cover important mathematical topics Exercises with answers Appendixes summarize useful rules Labs and advanced material available
Publisher: Princeton University Press
ISBN: 1400840910
Category : Science
Languages : en
Pages : 745
Book Description
Thirty years ago, biologists could get by with a rudimentary grasp of mathematics and modeling. Not so today. In seeking to answer fundamental questions about how biological systems function and change over time, the modern biologist is as likely to rely on sophisticated mathematical and computer-based models as traditional fieldwork. In this book, Sarah Otto and Troy Day provide biology students with the tools necessary to both interpret models and to build their own. The book starts at an elementary level of mathematical modeling, assuming that the reader has had high school mathematics and first-year calculus. Otto and Day then gradually build in depth and complexity, from classic models in ecology and evolution to more intricate class-structured and probabilistic models. The authors provide primers with instructive exercises to introduce readers to the more advanced subjects of linear algebra and probability theory. Through examples, they describe how models have been used to understand such topics as the spread of HIV, chaos, the age structure of a country, speciation, and extinction. Ecologists and evolutionary biologists today need enough mathematical training to be able to assess the power and limits of biological models and to develop theories and models themselves. This innovative book will be an indispensable guide to the world of mathematical models for the next generation of biologists. A how-to guide for developing new mathematical models in biology Provides step-by-step recipes for constructing and analyzing models Interesting biological applications Explores classical models in ecology and evolution Questions at the end of every chapter Primers cover important mathematical topics Exercises with answers Appendixes summarize useful rules Labs and advanced material available
The Beginnings and Evolution of Algebra
Author: Isabella Bashmakova
Publisher: American Mathematical Soc.
ISBN: 1470457229
Category : Mathematics
Languages : en
Pages : 199
Book Description
The elements of algebra were known to the ancient mesopotamians at least 4000 years ago. Today, algebra stands as one of the cornerstones of modern mathematics. How then did the subject evolve? An illuminating read for historians of mathematics and working algebraists looking into the history of their subject.
Publisher: American Mathematical Soc.
ISBN: 1470457229
Category : Mathematics
Languages : en
Pages : 199
Book Description
The elements of algebra were known to the ancient mesopotamians at least 4000 years ago. Today, algebra stands as one of the cornerstones of modern mathematics. How then did the subject evolve? An illuminating read for historians of mathematics and working algebraists looking into the history of their subject.
Reconstructing Evolution
Author: Olivier Gascuel
Publisher: Oxford University Press
ISBN: 0199208220
Category : Mathematics
Languages : en
Pages : 349
Book Description
Evolution is a complex process, acting at multiple scales, from DNA sequences and proteins to populations of species. Understanding and reconstructing evolution is of major importance in numerous subfields of biology. For example, phylogenetics and sequence evolution is central to comparative genomics, attempts to decipher genomes, and molecular epidemiology. Phylogenetics is also the focal point of large-scale international biodiversity assessment initiatives such as the 'Tree ofLife' project, which aims to build the evolutionary tree for all extant species.Since the pioneering work in phylogenetics in the 1960s, models have become increasingly sophisticated to account for the inherent complexity of evolution. They rely heavily on mathematics and aim at modelling and analyzing biological phenomena such as horizontal gene transfer, heterogeneity of mutation, and speciation and extinction processes. This book presents these recent models, their biological relevance, their mathematical basis, their properties, and the algorithms to infer them fromdata. A number of subfields from mathematics and computer science are involved: combinatorics, graph theory, stringology, probabilistic and Markov models, information theory, statistical inference, Monte Carlo methods, continuous and discrete algorithmics.This book arises from the Mathematics of Evolution & Phylogenetics meeting at the Mathematical Institute Henri Poincaré, Paris, in June 2005 and is based on the outstanding state-of-the-art reports presented by the conference speakers. Ten chapters - based around five themes - provide a detailed overview of key topics, from the underlying concepts to the latest results, some of which are at the forefront of current research.
Publisher: Oxford University Press
ISBN: 0199208220
Category : Mathematics
Languages : en
Pages : 349
Book Description
Evolution is a complex process, acting at multiple scales, from DNA sequences and proteins to populations of species. Understanding and reconstructing evolution is of major importance in numerous subfields of biology. For example, phylogenetics and sequence evolution is central to comparative genomics, attempts to decipher genomes, and molecular epidemiology. Phylogenetics is also the focal point of large-scale international biodiversity assessment initiatives such as the 'Tree ofLife' project, which aims to build the evolutionary tree for all extant species.Since the pioneering work in phylogenetics in the 1960s, models have become increasingly sophisticated to account for the inherent complexity of evolution. They rely heavily on mathematics and aim at modelling and analyzing biological phenomena such as horizontal gene transfer, heterogeneity of mutation, and speciation and extinction processes. This book presents these recent models, their biological relevance, their mathematical basis, their properties, and the algorithms to infer them fromdata. A number of subfields from mathematics and computer science are involved: combinatorics, graph theory, stringology, probabilistic and Markov models, information theory, statistical inference, Monte Carlo methods, continuous and discrete algorithmics.This book arises from the Mathematics of Evolution & Phylogenetics meeting at the Mathematical Institute Henri Poincaré, Paris, in June 2005 and is based on the outstanding state-of-the-art reports presented by the conference speakers. Ten chapters - based around five themes - provide a detailed overview of key topics, from the underlying concepts to the latest results, some of which are at the forefront of current research.
Dynamical Systems and Evolution Equations
Author: John A. Walker
Publisher: Springer Science & Business Media
ISBN: 1468410369
Category : Computers
Languages : en
Pages : 244
Book Description
This book grew out of a nine-month course first given during 1976-77 in the Division of Engineering Mechanics, University of Texas (Austin), and repeated during 1977-78 in the Department of Engineering Sciences and Applied Mathematics, Northwestern University. Most of the students were in their second year of graduate study, and all were familiar with Fourier series, Lebesgue integration, Hilbert space, and ordinary differential equa tions in finite-dimensional space. This book is primarily an exposition of certain methods of topological dynamics that have been found to be very useful in the analysis of physical systems but appear to be well known only to specialists. The purpose of the book is twofold: to present the material in such a way that the applications-oriented reader will be encouraged to apply these methods in the study of those physical systems of personal interest, and to make the coverage sufficient to render the current research literature intelligible, preparing the more mathematically inclined reader for research in this particular area of applied mathematics. We present only that portion of the theory which seems most useful in applications to physical systems. Adopting the view that the world is deterministic, we consider our basic problem to be predicting the future for a given physical system. This prediction is to be based on a known equation of evolution, describing the forward-time behavior of the system, but it is to be made without explicitly solving the equation.
Publisher: Springer Science & Business Media
ISBN: 1468410369
Category : Computers
Languages : en
Pages : 244
Book Description
This book grew out of a nine-month course first given during 1976-77 in the Division of Engineering Mechanics, University of Texas (Austin), and repeated during 1977-78 in the Department of Engineering Sciences and Applied Mathematics, Northwestern University. Most of the students were in their second year of graduate study, and all were familiar with Fourier series, Lebesgue integration, Hilbert space, and ordinary differential equa tions in finite-dimensional space. This book is primarily an exposition of certain methods of topological dynamics that have been found to be very useful in the analysis of physical systems but appear to be well known only to specialists. The purpose of the book is twofold: to present the material in such a way that the applications-oriented reader will be encouraged to apply these methods in the study of those physical systems of personal interest, and to make the coverage sufficient to render the current research literature intelligible, preparing the more mathematically inclined reader for research in this particular area of applied mathematics. We present only that portion of the theory which seems most useful in applications to physical systems. Adopting the view that the world is deterministic, we consider our basic problem to be predicting the future for a given physical system. This prediction is to be based on a known equation of evolution, describing the forward-time behavior of the system, but it is to be made without explicitly solving the equation.
Random Evolutions and Their Applications
Author: Anatoly Swishchuk
Publisher: Springer Science & Business Media
ISBN: 9401157545
Category : Mathematics
Languages : en
Pages : 212
Book Description
The main purpose of this handbook is to summarize and to put in order the ideas, methods, results and literature on the theory of random evolutions and their applications to the evolutionary stochastic systems in random media, and also to present some new trends in the theory of random evolutions and their applications. In physical language, a random evolution ( RE ) is a model for a dynamical sys tem whose state of evolution is subject to random variations. Such systems arise in all branches of science. For example, random Hamiltonian and Schrodinger equations with random potential in quantum mechanics, Maxwell's equation with a random refractive index in electrodynamics, transport equations associated with the trajec tory of a particle whose speed and direction change at random, etc. There are the examples of a single abstract situation in which an evolving system changes its "mode of evolution" or "law of motion" because of random changes of the "environment" or in a "medium". So, in mathematical language, a RE is a solution of stochastic operator integral equations in a Banach space. The operator coefficients of such equations depend on random parameters. Of course, in such generality , our equation includes any homogeneous linear evolving system. Particular examples of such equations were studied in physical applications many years ago. A general mathematical theory of such equations has been developed since 1969, the Theory of Random Evolutions.
Publisher: Springer Science & Business Media
ISBN: 9401157545
Category : Mathematics
Languages : en
Pages : 212
Book Description
The main purpose of this handbook is to summarize and to put in order the ideas, methods, results and literature on the theory of random evolutions and their applications to the evolutionary stochastic systems in random media, and also to present some new trends in the theory of random evolutions and their applications. In physical language, a random evolution ( RE ) is a model for a dynamical sys tem whose state of evolution is subject to random variations. Such systems arise in all branches of science. For example, random Hamiltonian and Schrodinger equations with random potential in quantum mechanics, Maxwell's equation with a random refractive index in electrodynamics, transport equations associated with the trajec tory of a particle whose speed and direction change at random, etc. There are the examples of a single abstract situation in which an evolving system changes its "mode of evolution" or "law of motion" because of random changes of the "environment" or in a "medium". So, in mathematical language, a RE is a solution of stochastic operator integral equations in a Banach space. The operator coefficients of such equations depend on random parameters. Of course, in such generality , our equation includes any homogeneous linear evolving system. Particular examples of such equations were studied in physical applications many years ago. A general mathematical theory of such equations has been developed since 1969, the Theory of Random Evolutions.
The Evolution of Mathematical Physics
Author: Sir Horace Lamb
Publisher:
ISBN:
Category : Mathematical physics
Languages : en
Pages : 60
Book Description
Publisher:
ISBN:
Category : Mathematical physics
Languages : en
Pages : 60
Book Description
The Dynamics and Evolution of Social Systems
Author: Jürgen Klüver
Publisher: Springer Science & Business Media
ISBN: 9780792364436
Category : Business & Economics
Languages : en
Pages : 308
Book Description
The central topic of this book is the mathematical analysis of social systems, understood in the following rather classical way: social systems consist of social actors who interact according to specific rules of interactions; the dynamics of social systems is then the consequences of these interactions, viz., the self-organization of social systems. According to particular demands of their environment, social systems are able to behave in an adaptive manner, that is they can change their rules of interaction by certain meta rules and thus generate a meta dynamics. It is possible to model and analyse mathematically both dynamics and meta dynamics, using cellular automata and genetic algorithms. These tools allow social systems theory to be carried through as precisely as the theories of natural systems, a feat that has not previously been possible. Readership: Researchers and graduate students in the fields of theoretical sociology and social and general systems theory and other interested scientists. No specialised knowledge of mathematics and/or computer science is required.
Publisher: Springer Science & Business Media
ISBN: 9780792364436
Category : Business & Economics
Languages : en
Pages : 308
Book Description
The central topic of this book is the mathematical analysis of social systems, understood in the following rather classical way: social systems consist of social actors who interact according to specific rules of interactions; the dynamics of social systems is then the consequences of these interactions, viz., the self-organization of social systems. According to particular demands of their environment, social systems are able to behave in an adaptive manner, that is they can change their rules of interaction by certain meta rules and thus generate a meta dynamics. It is possible to model and analyse mathematically both dynamics and meta dynamics, using cellular automata and genetic algorithms. These tools allow social systems theory to be carried through as precisely as the theories of natural systems, a feat that has not previously been possible. Readership: Researchers and graduate students in the fields of theoretical sociology and social and general systems theory and other interested scientists. No specialised knowledge of mathematics and/or computer science is required.