Author: Damien Calaque
Publisher: Springer
ISBN: 3319099493
Category : Science
Languages : en
Pages : 572
Book Description
Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed. Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for mathematicians and physicists alike, the focus is more on mathematical developments. This volume consists of four parts: The first Part covers local aspects of perturbative quantum field theory, with an emphasis on the axiomatization of the algebra behind the operator product expansion. The second Part highlights Chern-Simons gauge theories, while the third examines (semi-)classical field theories. In closing, Part 4 addresses factorization homology and factorization algebras.
Mathematical Aspects of Quantum Field Theories
Author: Damien Calaque
Publisher: Springer
ISBN: 3319099493
Category : Science
Languages : en
Pages : 572
Book Description
Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed. Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for mathematicians and physicists alike, the focus is more on mathematical developments. This volume consists of four parts: The first Part covers local aspects of perturbative quantum field theory, with an emphasis on the axiomatization of the algebra behind the operator product expansion. The second Part highlights Chern-Simons gauge theories, while the third examines (semi-)classical field theories. In closing, Part 4 addresses factorization homology and factorization algebras.
Publisher: Springer
ISBN: 3319099493
Category : Science
Languages : en
Pages : 572
Book Description
Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed. Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for mathematicians and physicists alike, the focus is more on mathematical developments. This volume consists of four parts: The first Part covers local aspects of perturbative quantum field theory, with an emphasis on the axiomatization of the algebra behind the operator product expansion. The second Part highlights Chern-Simons gauge theories, while the third examines (semi-)classical field theories. In closing, Part 4 addresses factorization homology and factorization algebras.
Mathematical Aspects of Quantum Field Theory
Author: Edson de Faria
Publisher: Cambridge University Press
ISBN: 1139489801
Category : Science
Languages : en
Pages :
Book Description
Over the last century quantum field theory has made a significant impact on the formulation and solution of mathematical problems and inspired powerful advances in pure mathematics. However, most accounts are written by physicists, and mathematicians struggle to find clear definitions and statements of the concepts involved. This graduate-level introduction presents the basic ideas and tools from quantum field theory to a mathematical audience. Topics include classical and quantum mechanics, classical field theory, quantization of classical fields, perturbative quantum field theory, renormalization, and the standard model. The material is also accessible to physicists seeking a better understanding of the mathematical background, providing the necessary tools from differential geometry on such topics as connections and gauge fields, vector and spinor bundles, symmetries and group representations.
Publisher: Cambridge University Press
ISBN: 1139489801
Category : Science
Languages : en
Pages :
Book Description
Over the last century quantum field theory has made a significant impact on the formulation and solution of mathematical problems and inspired powerful advances in pure mathematics. However, most accounts are written by physicists, and mathematicians struggle to find clear definitions and statements of the concepts involved. This graduate-level introduction presents the basic ideas and tools from quantum field theory to a mathematical audience. Topics include classical and quantum mechanics, classical field theory, quantization of classical fields, perturbative quantum field theory, renormalization, and the standard model. The material is also accessible to physicists seeking a better understanding of the mathematical background, providing the necessary tools from differential geometry on such topics as connections and gauge fields, vector and spinor bundles, symmetries and group representations.
Aspects of Quantum Field Theory in Curved Spacetime
Author: Stephen A. Fulling
Publisher: Cambridge University Press
ISBN: 9780521377683
Category : Mathematics
Languages : en
Pages : 332
Book Description
The theory of quantum fields on curved spacetimes has attracted great attention since the discovery, by Stephen Hawking, of black-hole evaporation. It remains an important subject for the understanding of such contemporary topics as inflationary cosmology, quantum gravity and superstring theory. This book provides, for mathematicians, an introduction to this field of physics in a language and from a viewpoint which such a reader should find congenial. Physicists should also gain from reading this book a sound grasp of various aspects of the theory, some of which have not been particularly emphasised in the existing review literature. The topics covered include normal-mode expansions for a general elliptic operator, Fock space, the Casimir effect, the 'Klein' paradox, particle definition and particle creation in expanding universes, asymptotic expansion of Green's functions and heat kernels, and renormalisation of the stress tensor. The style is pedagogic rather than formal; some knowledge of general relativity and differential geometry is assumed, but the author does supply background material on functional analysis and quantum field theory as required. The book arose from a course taught to graduate students and could be used for self-study or for advanced courses in relativity and quantum field theory.
Publisher: Cambridge University Press
ISBN: 9780521377683
Category : Mathematics
Languages : en
Pages : 332
Book Description
The theory of quantum fields on curved spacetimes has attracted great attention since the discovery, by Stephen Hawking, of black-hole evaporation. It remains an important subject for the understanding of such contemporary topics as inflationary cosmology, quantum gravity and superstring theory. This book provides, for mathematicians, an introduction to this field of physics in a language and from a viewpoint which such a reader should find congenial. Physicists should also gain from reading this book a sound grasp of various aspects of the theory, some of which have not been particularly emphasised in the existing review literature. The topics covered include normal-mode expansions for a general elliptic operator, Fock space, the Casimir effect, the 'Klein' paradox, particle definition and particle creation in expanding universes, asymptotic expansion of Green's functions and heat kernels, and renormalisation of the stress tensor. The style is pedagogic rather than formal; some knowledge of general relativity and differential geometry is assumed, but the author does supply background material on functional analysis and quantum field theory as required. The book arose from a course taught to graduate students and could be used for self-study or for advanced courses in relativity and quantum field theory.
Analysis On Fock Spaces And Mathematical Theory Of Quantum Fields: An Introduction To Mathematical Analysis Of Quantum Fields (Second Edition)
Author: Asao Arai
Publisher: World Scientific
ISBN: 9811288453
Category : Mathematics
Languages : en
Pages : 1115
Book Description
This book provides a comprehensive introduction to Fock space theory and its applications to mathematical quantum field theory. The first half of the book, Part I, is devoted to detailed descriptions of analysis on abstract Fock spaces (full Fock space, boson Fock space, fermion Fock space and boson-fermion Fock space). It includes the mathematics of second quantization, representation theory of canonical commutation and anti-commutation relations, Bogoliubov transformations, infinite-dimensional Dirac operators and supersymmetric quantum field in an abstract form. The second half of the book, Part II, covers applications of the mathematical theories in Part I to quantum field theory. Four kinds of free quantum fields are constructed and detailed analyses are made. A simple interacting quantum field model, called the van Hove-Miyatake model, is fully analyzed in an abstract form. Moreover, a list of interacting quantum field models is presented and an introductory description to each model is given. In this second edition, a new chapter (Chapter 15) is added to describe a mathematical theory of spontaneous symmetry breaking which is an important subject in modern quantum physics.This book is a good introductory text for graduate students in mathematics or physics who are interested in the mathematical aspects of quantum field theory. It is also well-suited for self-study, providing readers a firm foundation of knowledge and mathematical techniques for more advanced books and current research articles in the field of mathematical analysis on quantum fields. Numerous problems are added to aid readers in developing a deeper understanding of the field.
Publisher: World Scientific
ISBN: 9811288453
Category : Mathematics
Languages : en
Pages : 1115
Book Description
This book provides a comprehensive introduction to Fock space theory and its applications to mathematical quantum field theory. The first half of the book, Part I, is devoted to detailed descriptions of analysis on abstract Fock spaces (full Fock space, boson Fock space, fermion Fock space and boson-fermion Fock space). It includes the mathematics of second quantization, representation theory of canonical commutation and anti-commutation relations, Bogoliubov transformations, infinite-dimensional Dirac operators and supersymmetric quantum field in an abstract form. The second half of the book, Part II, covers applications of the mathematical theories in Part I to quantum field theory. Four kinds of free quantum fields are constructed and detailed analyses are made. A simple interacting quantum field model, called the van Hove-Miyatake model, is fully analyzed in an abstract form. Moreover, a list of interacting quantum field models is presented and an introductory description to each model is given. In this second edition, a new chapter (Chapter 15) is added to describe a mathematical theory of spontaneous symmetry breaking which is an important subject in modern quantum physics.This book is a good introductory text for graduate students in mathematics or physics who are interested in the mathematical aspects of quantum field theory. It is also well-suited for self-study, providing readers a firm foundation of knowledge and mathematical techniques for more advanced books and current research articles in the field of mathematical analysis on quantum fields. Numerous problems are added to aid readers in developing a deeper understanding of the field.
Analytic Aspects of Quantum Fields
Author: Andrei A. Bytsenko
Publisher: World Scientific
ISBN: 9789812775504
Category : Science
Languages : en
Pages : 376
Book Description
One of the aims of this book is to explain in a basic manner the seemingly difficult issues of mathematical structure using some specific examples as a guide. In each of the cases considered, a comprehensible physical problem is approached, to which the corresponding mathematical scheme is applied, its usefulness being duly demonstrated. The authors try to fill the gap that always exists between the physics of quantum field theories and the mathematical methods best suited for its formulation, which are increasingly demanding on the mathematical ability of the physicist. Contents: Survey of Path Integral Quantization and Regularization Techniques; The Zeta-Function Regularization Method; Generalized Spectra and Spectral Functions on Non-Commutative Spaces; Spectral Functions of Laplace Operator on Locally Symmetric Spaces; Spinor Fields; Field Fluctuations and Related Variances; The Multiplicative Anomaly; Applications of the Multiplicative Anomaly; The Casimir Effect. Readership: Mathematical and high energy physicists.
Publisher: World Scientific
ISBN: 9789812775504
Category : Science
Languages : en
Pages : 376
Book Description
One of the aims of this book is to explain in a basic manner the seemingly difficult issues of mathematical structure using some specific examples as a guide. In each of the cases considered, a comprehensible physical problem is approached, to which the corresponding mathematical scheme is applied, its usefulness being duly demonstrated. The authors try to fill the gap that always exists between the physics of quantum field theories and the mathematical methods best suited for its formulation, which are increasingly demanding on the mathematical ability of the physicist. Contents: Survey of Path Integral Quantization and Regularization Techniques; The Zeta-Function Regularization Method; Generalized Spectra and Spectral Functions on Non-Commutative Spaces; Spectral Functions of Laplace Operator on Locally Symmetric Spaces; Spinor Fields; Field Fluctuations and Related Variances; The Multiplicative Anomaly; Applications of the Multiplicative Anomaly; The Casimir Effect. Readership: Mathematical and high energy physicists.
Quantum Field Theory for Mathematicians
Author: Robin Ticciati
Publisher: Cambridge University Press
ISBN: 052163265X
Category : Mathematics
Languages : en
Pages : 720
Book Description
This should be a useful reference for anybody with an interest in quantum theory.
Publisher: Cambridge University Press
ISBN: 052163265X
Category : Mathematics
Languages : en
Pages : 720
Book Description
This should be a useful reference for anybody with an interest in quantum theory.
Mathematical Theory of Quantum Fields
Author: Huzihiro Araki
Publisher: Oxford University Press
ISBN: 0192539116
Category : Science
Languages : en
Pages : 254
Book Description
This is an introduction to the mathematical foundations of quantum field theory, using operator algebraic methods and emphasizing the link between the mathematical formulations and related physical concepts. It starts with a general probabilistic description of physics, which encompasses both classical and quantum physics. The basic key physical notions are clarified at this point. It then introduces operator algebraic methods for quantum theory, and goes on to discuss the theory of special relativity, scattering theory, and sector theory in this context.
Publisher: Oxford University Press
ISBN: 0192539116
Category : Science
Languages : en
Pages : 254
Book Description
This is an introduction to the mathematical foundations of quantum field theory, using operator algebraic methods and emphasizing the link between the mathematical formulations and related physical concepts. It starts with a general probabilistic description of physics, which encompasses both classical and quantum physics. The basic key physical notions are clarified at this point. It then introduces operator algebraic methods for quantum theory, and goes on to discuss the theory of special relativity, scattering theory, and sector theory in this context.
Quantum Field Theory: A Tourist Guide for Mathematicians
Author: Gerald B. Folland
Publisher: American Mathematical Soc.
ISBN: 1470464837
Category : Education
Languages : en
Pages : 325
Book Description
Quantum field theory has been a great success for physics, but it is difficult for mathematicians to learn because it is mathematically incomplete. Folland, who is a mathematician, has spent considerable time digesting the physical theory and sorting out the mathematical issues in it. Fortunately for mathematicians, Folland is a gifted expositor. The purpose of this book is to present the elements of quantum field theory, with the goal of understanding the behavior of elementary particles rather than building formal mathematical structures, in a form that will be comprehensible to mathematicians. Rigorous definitions and arguments are presented as far as they are available, but the text proceeds on a more informal level when necessary, with due care in identifying the difficulties. The book begins with a review of classical physics and quantum mechanics, then proceeds through the construction of free quantum fields to the perturbation-theoretic development of interacting field theory and renormalization theory, with emphasis on quantum electrodynamics. The final two chapters present the functional integral approach and the elements of gauge field theory, including the Salam–Weinberg model of electromagnetic and weak interactions.
Publisher: American Mathematical Soc.
ISBN: 1470464837
Category : Education
Languages : en
Pages : 325
Book Description
Quantum field theory has been a great success for physics, but it is difficult for mathematicians to learn because it is mathematically incomplete. Folland, who is a mathematician, has spent considerable time digesting the physical theory and sorting out the mathematical issues in it. Fortunately for mathematicians, Folland is a gifted expositor. The purpose of this book is to present the elements of quantum field theory, with the goal of understanding the behavior of elementary particles rather than building formal mathematical structures, in a form that will be comprehensible to mathematicians. Rigorous definitions and arguments are presented as far as they are available, but the text proceeds on a more informal level when necessary, with due care in identifying the difficulties. The book begins with a review of classical physics and quantum mechanics, then proceeds through the construction of free quantum fields to the perturbation-theoretic development of interacting field theory and renormalization theory, with emphasis on quantum electrodynamics. The final two chapters present the functional integral approach and the elements of gauge field theory, including the Salam–Weinberg model of electromagnetic and weak interactions.
What Is a Quantum Field Theory?
Author: Michel Talagrand
Publisher: Cambridge University Press
ISBN: 1316510271
Category : Science
Languages : en
Pages : 759
Book Description
A lively and erudite introduction for readers with a background in undergraduate mathematics but no previous knowledge of physics.
Publisher: Cambridge University Press
ISBN: 1316510271
Category : Science
Languages : en
Pages : 759
Book Description
A lively and erudite introduction for readers with a background in undergraduate mathematics but no previous knowledge of physics.
Mathematical Foundations Of Quantum Field Theory
Author: Albert Schwarz
Publisher: World Scientific
ISBN: 981327865X
Category : Science
Languages : en
Pages : 461
Book Description
The book is very different from other books devoted to quantum field theory, both in the style of exposition and in the choice of topics. Written for both mathematicians and physicists, the author explains the theoretical formulation with a mixture of rigorous proofs and heuristic arguments; references are given for those who are looking for more details. The author is also careful to avoid ambiguous definitions and statements that can be found in some physics textbooks.In terms of topics, almost all other books are devoted to relativistic quantum field theory, conversely this book is concentrated on the material that does not depend on the assumptions of Lorentz-invariance and/or locality. It contains also a chapter discussing application of methods of quantum field theory to statistical physics, in particular to the derivation of the diagram techniques that appear in thermo-field dynamics and Keldysh formalism. It is not assumed that the reader is familiar with quantum mechanics; the book contains a short introduction to quantum mechanics for mathematicians and an appendix devoted to some mathematical facts used in the book.
Publisher: World Scientific
ISBN: 981327865X
Category : Science
Languages : en
Pages : 461
Book Description
The book is very different from other books devoted to quantum field theory, both in the style of exposition and in the choice of topics. Written for both mathematicians and physicists, the author explains the theoretical formulation with a mixture of rigorous proofs and heuristic arguments; references are given for those who are looking for more details. The author is also careful to avoid ambiguous definitions and statements that can be found in some physics textbooks.In terms of topics, almost all other books are devoted to relativistic quantum field theory, conversely this book is concentrated on the material that does not depend on the assumptions of Lorentz-invariance and/or locality. It contains also a chapter discussing application of methods of quantum field theory to statistical physics, in particular to the derivation of the diagram techniques that appear in thermo-field dynamics and Keldysh formalism. It is not assumed that the reader is familiar with quantum mechanics; the book contains a short introduction to quantum mechanics for mathematicians and an appendix devoted to some mathematical facts used in the book.