Mathematical Physiology

Mathematical Physiology PDF Author: James Keener
Publisher: Springer Science & Business Media
ISBN: 038775847X
Category : Mathematics
Languages : en
Pages : 1067

Get Book Here

Book Description
Divided into two volumes, the book begins with a pedagogical presentation of some of the basic theory, with chapters on biochemical reactions, diffusion, excitability, wave propagation and cellular homeostasis. The second, more extensive part discusses particular physiological systems, with chapters on calcium dynamics, bursting oscillations and secretion, cardiac cells, muscles, intercellular communication, the circulatory system, the immune system, wound healing, the respiratory system, the visual system, hormone physiology, renal physiology, digestion, the visual system and hearing. New chapters on Calcium Dynamics, Neuroendocrine Cells and Regulation of Cell Function have been included. Reviews from first edition: Keener and Sneyd's Mathematical Physiology is the first comprehensive text of its kind that deals exclusively with the interplay between mathematics and physiology. Writing a book like this is an audacious act! -Society of Mathematical Biology Keener and Sneyd's is unique in that it attempts to present one of the most important subfields of biology and medicine, physiology, in terms of mathematical "language", rather than organizing materials around mathematical methodology. -SIAM review

Mathematical Physiology

Mathematical Physiology PDF Author: James Keener
Publisher: Springer Science & Business Media
ISBN: 038775847X
Category : Mathematics
Languages : en
Pages : 1067

Get Book Here

Book Description
Divided into two volumes, the book begins with a pedagogical presentation of some of the basic theory, with chapters on biochemical reactions, diffusion, excitability, wave propagation and cellular homeostasis. The second, more extensive part discusses particular physiological systems, with chapters on calcium dynamics, bursting oscillations and secretion, cardiac cells, muscles, intercellular communication, the circulatory system, the immune system, wound healing, the respiratory system, the visual system, hormone physiology, renal physiology, digestion, the visual system and hearing. New chapters on Calcium Dynamics, Neuroendocrine Cells and Regulation of Cell Function have been included. Reviews from first edition: Keener and Sneyd's Mathematical Physiology is the first comprehensive text of its kind that deals exclusively with the interplay between mathematics and physiology. Writing a book like this is an audacious act! -Society of Mathematical Biology Keener and Sneyd's is unique in that it attempts to present one of the most important subfields of biology and medicine, physiology, in terms of mathematical "language", rather than organizing materials around mathematical methodology. -SIAM review

Applied Mathematical Models in Human Physiology

Applied Mathematical Models in Human Physiology PDF Author: Johnny T. Ottesen
Publisher: SIAM
ISBN: 9780898718287
Category : Medical
Languages : en
Pages : 311

Get Book Here

Book Description
This book introduces mathematicians to real applications from physiology. Using mathematics to analyze physiological systems, the authors focus on models reflecting current research in cardiovascular and pulmonary physiology. In particular, they present models describing blood flow in the heart and the cardiovascular system, as well as the transport of oxygen and carbon dioxide through the respiratory system and a model for baroreceptor regulation.

Mathematical Modeling and Validation in Physiology

Mathematical Modeling and Validation in Physiology PDF Author: Jerry J. Batzel
Publisher: Springer
ISBN: 3642328822
Category : Mathematics
Languages : en
Pages : 270

Get Book Here

Book Description
This volume synthesizes theoretical and practical aspects of both the mathematical and life science viewpoints needed for modeling of the cardiovascular-respiratory system specifically and physiological systems generally. Theoretical points include model design, model complexity and validation in the light of available data, as well as control theory approaches to feedback delay and Kalman filter applications to parameter identification. State of the art approaches using parameter sensitivity are discussed for enhancing model identifiability through joint analysis of model structure and data. Practical examples illustrate model development at various levels of complexity based on given physiological information. The sensitivity-based approaches for examining model identifiability are illustrated by means of specific modeling examples. The themes presented address the current problem of patient-specific model adaptation in the clinical setting, where data is typically limited.

An Introduction to Mathematical Physiology and Biology

An Introduction to Mathematical Physiology and Biology PDF Author: J. Mazumdar
Publisher: Cambridge University Press
ISBN: 9780521646758
Category : Mathematics
Languages : en
Pages : 244

Get Book Here

Book Description
This textbook is concerned with the mathematical modelling of biological and physiological phenomena for mathematically sophisticated students. A range of topics are discussed: diffusion population dynamics, autonomous differential equations and the stability of ecosystems, biogeography, pharmokinetics, biofluid mechanics, cardiac mechanics, the spectral analysis of heart sounds using FFT techniques. The last chapter deals with a wide variety of commonly used medical devices. This book is based on courses taught by the author over many years and the material is well class tested. The reader is aided by many exercises that examine key points and extend the presentation in the body of the text. All students of mathematical biology will find this book to be a highly useful resource.

Mathematical and Computational Methods in Physiology

Mathematical and Computational Methods in Physiology PDF Author: L. Fedina
Publisher: Elsevier
ISBN: 1483190226
Category : Science
Languages : en
Pages : 352

Get Book Here

Book Description
Mathematical and Computational Methods in Physiology discusses the importance of quantitative description of physiological phenomena and for quantitative comparison of experimental data. An article explains the homeostasis of the body with a focus on the controlling aspects. This section evaluates the concepts of modern physiology and biocybernetics. The canal-ocular reflex and the otolith-ocular reflex in man stimulates eye rotations compensatory for head angular and linear displacements. The book enumerates some modelling and simulation to observe the visual-vestibular interaction during angular and linear body acceleration. A section on the determination of cardiovascular control is given. The text reviews the mathematical models of the biological age of the rat. A numerical simulation of water transport in epithelial junctions is explained comprehensively. A chapter analyzing the computer simulation of drug-receptor interaction is presented. The book will provide useful information to zoologists, doctors, ophthalmologists, students and researchers in the field of medicine.

Mathematical Modeling in Renal Physiology

Mathematical Modeling in Renal Physiology PDF Author: Anita T. Layton
Publisher: Springer
ISBN: 364227367X
Category : Mathematics
Languages : en
Pages : 225

Get Book Here

Book Description
With the availability of high speed computers and advances in computational techniques, the application of mathematical modeling to biological systems is expanding. This comprehensive and richly illustrated volume provides up-to-date, wide-ranging material on the mathematical modeling of kidney physiology, including clinical data analysis and practice exercises. Basic concepts and modeling techniques introduced in this volume can be applied to other areas (or organs) of physiology. The models presented describe the main homeostatic functions performed by the kidney, including blood filtration, excretion of water and salt, maintenance of electrolyte balance and regulation of blood pressure. Each chapter includes an introduction to the basic relevant physiology, a derivation of the essential conservation equations and then a discussion of a series of mathematical models, with increasing level of complexity. This volume will be of interest to biological and mathematical scientists, as well as physiologists and nephrologists, who would like an introduction to mathematical techniques that can be applied to renal transport and function. The material is written for students who have had college-level calculus, but can be used in modeling courses in applied mathematics at all levels through early graduate courses.

Fractal Physiology

Fractal Physiology PDF Author: James B Bassingthwaighte
Publisher: Springer
ISBN: 1461475724
Category : Medical
Languages : en
Pages : 371

Get Book Here

Book Description
I know that most men, including those at ease with the problems of the greatest complexity, can seldom accept even the simplest and most obvious truth if it be such as would oblige them to admit the falsity of conclusions which they have delighted in explaining to colleagues, which they have proudly taught to others, and which they have woven, thread by thread, into the fabric of their lives. Joseph Ford quoting Tolstoy (Gleick, 1987) We are used to thinking that natural objects have a certain form and that this form is determined by a characteristic scale. If we magnify the object beyond this scale, no new features are revealed. To correctly measure the properties of the object, such as length, area, or volume, we measure it at a resolution finer than the characteristic scale of the object. We expect that the value we measure has a unique value for the object. This simple idea is the basis of the calculus, Euclidean geometry, and the theory of measurement. However, Mandelbrot (1977, 1983) brought to the world's attention that many natural objects simply do not have this preconceived form. Many of the structures in space and processes in time of living things have a very different form. Living things have structures in space and fluctuations in time that cannot be characterized by one spatial or temporal scale. They extend over many spatial or temporal scales.

Mathematical Aspects of Physiology

Mathematical Aspects of Physiology PDF Author: F. C. Hoppensteadt
Publisher:
ISBN:
Category : Medical
Languages : en
Pages : 408

Get Book Here

Book Description


Introduction to Modeling in Physiology and Medicine

Introduction to Modeling in Physiology and Medicine PDF Author: Claudio Cobelli
Publisher: Elsevier
ISBN: 0080559980
Category : Technology & Engineering
Languages : en
Pages : 337

Get Book Here

Book Description
This unified modeling textbook for students of biomedical engineering provides a complete course text on the foundations, theory and practice of modeling and simulation in physiology and medicine. It is dedicated to the needs of biomedical engineering and clinical students, supported by applied BME applications and examples. Developed for biomedical engineering and related courses: speaks to BME students at a level and in a language appropriate to their needs, with an interdisciplinary clinical/engineering approach, quantitative basis, and many applied examples to enhance learning Delivers a quantitative approach to modeling and also covers simulation: the perfect foundation text for studies across BME and medicine Extensive case studies and engineering applications from BME, plus end-of-chapter exercises

Computational And Mathematical Methods In Cardiovascular Physiology

Computational And Mathematical Methods In Cardiovascular Physiology PDF Author: Liang Zhong
Publisher: World Scientific
ISBN: 9813270659
Category : Medical
Languages : en
Pages : 458

Get Book Here

Book Description
Cardiovascular diseases (CVD) including heart diseases, peripheral vascular disease and heart failure, account for one-third of deaths throughout the world. CVD risk factors include systolic blood pressure, total cholesterol, high-density lipoprotein cholesterol, and diabetic status. Clinical trials have demonstrated that when modifiable risk factors are treated and corrected, the chances of CVD occurring can be reduced. This illustrates the importance of this book's elaborate coverage of cardiovascular physiology by the application of mathematical and computational methods.This book has literally transformed Cardiovascular Physiology into a STEM discipline, involving (i) quantitative formulations of heart anatomy and physiology, (ii) technologies for imaging the heart and blood vessels, (iii) coronary stenosis hemodynamics measure by means of fractional flow reserve and intervention by grafting and stenting, (iv) fluid mechanics and computational analysis of blood flow in the heart, aorta and coronary arteries, and (v) design of heart valves, percutaneous valve stents, and ventricular assist devices.So how is this mathematically and computationally configured landscape going to impact cardiology and even cardiac surgery? We are now entering a new era of mathematical formulations of anatomy and physiology, leading to technological formulations of medical and surgical procedures towards more precise medicine and surgery. This will entail reformatting of (i) the medical MD curriculum and courses, so as to educate and train a new generation of physicians who are conversant with medical technologies for applying into clinical care, as well as (ii) structuring of MD-PhD (Computational Medicine and Surgery) Program, to train competent medical and surgical specialists in precision medical care and patient-specific surgical care.This book provides a gateway for this new emerging scenario of (i) science and engineering based medical educational curriculum, and (ii) technologically oriented medical and surgical procedures. As such, this book can be usefully employed as a textbook for courses in (i) cardiovascular physiology in both the schools of engineering and medicine of universities, as well as (ii) cardiovascular engineering in biomedical engineering departments worldwide.