Mathematical Analysis of Physical Problems

Mathematical Analysis of Physical Problems PDF Author: Philip Russell Wallace
Publisher: Courier Corporation
ISBN: 0486646769
Category : Science
Languages : en
Pages : 644

Get Book Here

Book Description
This mathematical reference for theoretical physics employs common techniques and concepts to link classical and modern physics. It provides the necessary mathematics to solve most of the problems. Topics include the vibrating string, linear vector spaces, the potential equation, problems of diffusion and attenuation, probability and stochastic processes, and much more. 1972 edition.

Mathematical Analysis of Physical Problems

Mathematical Analysis of Physical Problems PDF Author: Philip Russell Wallace
Publisher: Courier Corporation
ISBN: 0486646769
Category : Science
Languages : en
Pages : 644

Get Book Here

Book Description
This mathematical reference for theoretical physics employs common techniques and concepts to link classical and modern physics. It provides the necessary mathematics to solve most of the problems. Topics include the vibrating string, linear vector spaces, the potential equation, problems of diffusion and attenuation, probability and stochastic processes, and much more. 1972 edition.

Mathematical Analysis of Problems in the Natural Sciences

Mathematical Analysis of Problems in the Natural Sciences PDF Author: Vladimir Zorich
Publisher: Springer Science & Business Media
ISBN: 3642148131
Category : Mathematics
Languages : en
Pages : 133

Get Book Here

Book Description
Based on a two-semester course aimed at illustrating various interactions of "pure mathematics" with other sciences, such as hydrodynamics, thermodynamics, statistical physics and information theory, this text unifies three general topics of analysis and physics, which are as follows: the dimensional analysis of physical quantities, which contains various applications including Kolmogorov's model for turbulence; functions of very large number of variables and the principle of concentration along with the non-linear law of large numbers, the geometric meaning of the Gauss and Maxwell distributions, and the Kotelnikov-Shannon theorem; and, finally, classical thermodynamics and contact geometry, which covers two main principles of thermodynamics in the language of differential forms, contact distributions, the Frobenius theorem and the Carnot-Caratheodory metric. It includes problems, historical remarks, and Zorich's popular article, "Mathematics as language and method."

Problems in Mathematical Analysis

Problems in Mathematical Analysis PDF Author: Biler
Publisher: Routledge
ISBN: 135142145X
Category : Mathematics
Languages : en
Pages : 232

Get Book Here

Book Description
Chapter 1 poses 134 problems concerning real and complex numbers, chapter 2 poses 123 problems concerning sequences, and so it goes, until in chapter 9 one encounters 201 problems concerning functional analysis. The remainder of the book is given over to the presentation of hints, answers or referen

Mathematical Tools for Changing Scale in the Analysis of Physical Systems

Mathematical Tools for Changing Scale in the Analysis of Physical Systems PDF Author: William G. Gray
Publisher: CRC Press
ISBN: 1000722775
Category : Mathematics
Languages : en
Pages : 260

Get Book Here

Book Description
Mathematical Tools for Changing Scale in the Analysis of Physical Systems presents a new systematic approach to changing the spatial scale of the differential equations describing science and engineering problems. It defines vectors, tensors, and differential operators in arbitrary orthogonal coordinate systems without resorting to conceptually difficult Riemmann-Christoffel tensor and contravariant and covariant base vectors. It reveals the usefulness of generalized functions for indicating curvilineal, surficial, or spatial regions of integration and for transforming among these integration regions. These powerful mathematical tools are harnessed to provide 128 theorems in tabular format (most not previously available in the literature) that transform time-derivative and del operators of a function at one scale to the corresponding operators acting on the function at a larger scale. Mathematical Tools for Changing Scale in the Analysis of Physical Systems also provides sample applications of the theorems to obtain continuum balance relations for arbitrary surfaces, multiphase systems, and problems of reduced dimensionality. The mathematical techniques and tabulated theorems ensure the book will be an invaluable analysis tool for practitioners and researchers studying balance equations for systems encountered in the fields of hydraulics, hydrology, porous media physics, structural analysis, chemical transport, heat transfer, and continuum mechanics.

Mathematical Analysis

Mathematical Analysis PDF Author: John C. Burkill
Publisher: Krishna Prakashan Media
ISBN:
Category :
Languages : en
Pages : 304

Get Book Here

Book Description


The Water Waves Problem

The Water Waves Problem PDF Author: David Lannes
Publisher: American Mathematical Soc.
ISBN: 0821894706
Category : Mathematics
Languages : en
Pages : 347

Get Book Here

Book Description
This monograph provides a comprehensive and self-contained study on the theory of water waves equations, a research area that has been very active in recent years. The vast literature devoted to the study of water waves offers numerous asymptotic models.

Mathematical Analysis in Engineering

Mathematical Analysis in Engineering PDF Author: Chiang C. Mei
Publisher: Cambridge University Press
ISBN: 9780521587983
Category : Mathematics
Languages : en
Pages : 484

Get Book Here

Book Description
A paperback edition of successful and well reviewed 1995 graduate text on applied mathematics for engineers.

A Problem Book in Real Analysis

A Problem Book in Real Analysis PDF Author: Asuman G. Aksoy
Publisher: Springer Science & Business Media
ISBN: 1441912967
Category : Mathematics
Languages : en
Pages : 257

Get Book Here

Book Description
Education is an admirable thing, but it is well to remember from time to time that nothing worth knowing can be taught. Oscar Wilde, “The Critic as Artist,” 1890. Analysis is a profound subject; it is neither easy to understand nor summarize. However, Real Analysis can be discovered by solving problems. This book aims to give independent students the opportunity to discover Real Analysis by themselves through problem solving. ThedepthandcomplexityofthetheoryofAnalysiscanbeappreciatedbytakingaglimpseatits developmental history. Although Analysis was conceived in the 17th century during the Scienti?c Revolution, it has taken nearly two hundred years to establish its theoretical basis. Kepler, Galileo, Descartes, Fermat, Newton and Leibniz were among those who contributed to its genesis. Deep conceptual changes in Analysis were brought about in the 19th century by Cauchy and Weierstrass. Furthermore, modern concepts such as open and closed sets were introduced in the 1900s. Today nearly every undergraduate mathematics program requires at least one semester of Real Analysis. Often, students consider this course to be the most challenging or even intimidating of all their mathematics major requirements. The primary goal of this book is to alleviate those concerns by systematically solving the problems related to the core concepts of most analysis courses. In doing so, we hope that learning analysis becomes less taxing and thereby more satisfying.

Sharpening Mathematical Analysis Skills

Sharpening Mathematical Analysis Skills PDF Author: Alina Sîntămărian
Publisher: Springer Nature
ISBN: 3030771393
Category : Mathematics
Languages : en
Pages : 543

Get Book Here

Book Description
This book gathers together a novel collection of problems in mathematical analysis that are challenging and worth studying. They cover most of the classical topics of a course in mathematical analysis, and include challenges presented with an increasing level of difficulty. Problems are designed to encourage creativity, and some of them were especially crafted to lead to open problems which might be of interest for students seeking motivation to get a start in research. The sets of problems are comprised in Part I. The exercises are arranged on topics, many of them being preceded by supporting theory. Content starts with limits, series of real numbers and power series, extending to derivatives and their applications, partial derivatives and implicit functions. Difficult problems have been structured in parts, helping the reader to find a solution. Challenges and open problems are scattered throughout the text, being an invitation to discover new original methods for proving known results and establishing new ones. The final two chapters offer ambitious readers splendid problems and two new proofs of a famous quadratic series involving harmonic numbers. In Part II, the reader will find solutions to the proposed exercises. Undergraduate students in mathematics, physics and engineering, seeking to strengthen their skills in analysis, will most benefit from this work, along with instructors involved in math contests, individuals who want to enrich and test their knowledge in analysis, and anyone willing to explore the standard topics of mathematical analysis in ways that aren’t commonly seen in regular textbooks.

Discovering Mathematics

Discovering Mathematics PDF Author: Jiří Gregor
Publisher: Springer Science & Business Media
ISBN: 0857290649
Category : Mathematics
Languages : en
Pages : 243

Get Book Here

Book Description
The book contains chapters of structured approach to problem solving in mathematical analysis on an intermediate level. It follows the ideas of G.Polya and others, distinguishing between exercises and problem solving in mathematics. Interrelated concepts are connected by hyperlinks, pointing toward easier or more difficult problems so as to show paths of mathematical reasoning. Basic definitions and theorems can also be found by hyperlinks from relevant places. Problems are open to alternative formulations, generalizations, simplifications, and verification of hypotheses by the reader; this is shown to be helpful in solving problems. The book presents how advanced mathematical software can aid all stages of mathematical reasoning while the mathematical content remains in foreground. The authors show how software can contribute to deeper understanding and to enlarging the scope of teaching for students and teachers of mathematics.