Author: McGraw-Hill
Publisher:
ISBN: 9780078908606
Category : Geometry
Languages : en
Pages : 204
Book Description
Math Triumphs--Foundations for Geometry, Teacher Edition
Math Triumphs--Foundations for Geometry
Author: McGraw-Hill Education
Publisher: McGraw-Hill Education
ISBN: 9780078908590
Category : Mathematics
Languages : en
Pages : 203
Book Description
Math Triumphs is an intensive intervention resource for students who are two or more years below grade level. The series accompanies Glencoe Algebra 1, Geometry, and Algebra 2 and provides step-by-step intervention, vocabulary support, and data-driven decision making to help students succeed in high school mathematics.
Publisher: McGraw-Hill Education
ISBN: 9780078908590
Category : Mathematics
Languages : en
Pages : 203
Book Description
Math Triumphs is an intensive intervention resource for students who are two or more years below grade level. The series accompanies Glencoe Algebra 1, Geometry, and Algebra 2 and provides step-by-step intervention, vocabulary support, and data-driven decision making to help students succeed in high school mathematics.
Math Triumphs--Foundations for Algebra 1
Author: McGraw Hill
Publisher: McGraw-Hill Education
ISBN: 9780078908460
Category : Mathematics
Languages : en
Pages : 0
Book Description
Math Triumphs is an intensive intervention resource for students who are two or more years below grade level. The series accompanies Glencoe Algebra 1, Geometry, and Algebra 2 and provides step-by-step intervention, vocabulary support, and data-driven decision making to help students succeed in high school mathematics.
Publisher: McGraw-Hill Education
ISBN: 9780078908460
Category : Mathematics
Languages : en
Pages : 0
Book Description
Math Triumphs is an intensive intervention resource for students who are two or more years below grade level. The series accompanies Glencoe Algebra 1, Geometry, and Algebra 2 and provides step-by-step intervention, vocabulary support, and data-driven decision making to help students succeed in high school mathematics.
California Math Triumphs
Author:
Publisher:
ISBN: 9780078787928
Category : Mathematics
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9780078787928
Category : Mathematics
Languages : en
Pages : 0
Book Description
Shape
Author: Jordan Ellenberg
Publisher: Penguin
ISBN: 1984879065
Category : Mathematics
Languages : en
Pages : 481
Book Description
An instant New York Times Bestseller! “Unreasonably entertaining . . . reveals how geometric thinking can allow for everything from fairer American elections to better pandemic planning.” —The New York Times From the New York Times-bestselling author of How Not to Be Wrong—himself a world-class geometer—a far-ranging exploration of the power of geometry, which turns out to help us think better about practically everything. How should a democracy choose its representatives? How can you stop a pandemic from sweeping the world? How do computers learn to play Go, and why is learning Go so much easier for them than learning to read a sentence? Can ancient Greek proportions predict the stock market? (Sorry, no.) What should your kids learn in school if they really want to learn to think? All these are questions about geometry. For real. If you're like most people, geometry is a sterile and dimly remembered exercise you gladly left behind in the dust of ninth grade, along with your braces and active romantic interest in pop singers. If you recall any of it, it's plodding through a series of miniscule steps only to prove some fact about triangles that was obvious to you in the first place. That's not geometry. Okay, it is geometry, but only a tiny part, which has as much to do with geometry in all its flush modern richness as conjugating a verb has to do with a great novel. Shape reveals the geometry underneath some of the most important scientific, political, and philosophical problems we face. Geometry asks: Where are things? Which things are near each other? How can you get from one thing to another thing? Those are important questions. The word "geometry"comes from the Greek for "measuring the world." If anything, that's an undersell. Geometry doesn't just measure the world—it explains it. Shape shows us how.
Publisher: Penguin
ISBN: 1984879065
Category : Mathematics
Languages : en
Pages : 481
Book Description
An instant New York Times Bestseller! “Unreasonably entertaining . . . reveals how geometric thinking can allow for everything from fairer American elections to better pandemic planning.” —The New York Times From the New York Times-bestselling author of How Not to Be Wrong—himself a world-class geometer—a far-ranging exploration of the power of geometry, which turns out to help us think better about practically everything. How should a democracy choose its representatives? How can you stop a pandemic from sweeping the world? How do computers learn to play Go, and why is learning Go so much easier for them than learning to read a sentence? Can ancient Greek proportions predict the stock market? (Sorry, no.) What should your kids learn in school if they really want to learn to think? All these are questions about geometry. For real. If you're like most people, geometry is a sterile and dimly remembered exercise you gladly left behind in the dust of ninth grade, along with your braces and active romantic interest in pop singers. If you recall any of it, it's plodding through a series of miniscule steps only to prove some fact about triangles that was obvious to you in the first place. That's not geometry. Okay, it is geometry, but only a tiny part, which has as much to do with geometry in all its flush modern richness as conjugating a verb has to do with a great novel. Shape reveals the geometry underneath some of the most important scientific, political, and philosophical problems we face. Geometry asks: Where are things? Which things are near each other? How can you get from one thing to another thing? Those are important questions. The word "geometry"comes from the Greek for "measuring the world." If anything, that's an undersell. Geometry doesn't just measure the world—it explains it. Shape shows us how.
Intersection Theory
Author: W. Fulton
Publisher: Springer Science & Business Media
ISBN: 3662024217
Category : Mathematics
Languages : en
Pages : 483
Book Description
From the ancient origins of algebraic geometry in the solution of polynomial equations, through the triumphs of algebraic geometry during the last two cen turies, intersection theory has played a central role. Since its role in founda tional crises has been no less prominent, the lack of a complete modern treatise on intersection theory has been something of an embarrassment. The aim of this book is to develop the foundations of intersection theory, and to indicate the range of classical and modern applications. Although a comprehensive his tory of this vast subject is not attempted, we have tried to point out some of the striking early appearances of the ideas of intersection theory. Recent improvements in our understanding not only yield a stronger and more useful theory than previously available, but also make it possible to devel op the subject from the beginning with fewer prerequisites from algebra and algebraic geometry. It is hoped that the basic text can be read by one equipped with a first course in algebraic geometry, with occasional use of the two appen dices. Some of the examples, and a few of the later sections, require more spe cialized knowledge. The text is designed so that one who understands the con structions and grants the main theorems of the first six chapters can read other chapters separately. Frequent parenthetical references to previous sections are included for such readers. The summaries which begin each chapter should fa cilitate use as a reference.
Publisher: Springer Science & Business Media
ISBN: 3662024217
Category : Mathematics
Languages : en
Pages : 483
Book Description
From the ancient origins of algebraic geometry in the solution of polynomial equations, through the triumphs of algebraic geometry during the last two cen turies, intersection theory has played a central role. Since its role in founda tional crises has been no less prominent, the lack of a complete modern treatise on intersection theory has been something of an embarrassment. The aim of this book is to develop the foundations of intersection theory, and to indicate the range of classical and modern applications. Although a comprehensive his tory of this vast subject is not attempted, we have tried to point out some of the striking early appearances of the ideas of intersection theory. Recent improvements in our understanding not only yield a stronger and more useful theory than previously available, but also make it possible to devel op the subject from the beginning with fewer prerequisites from algebra and algebraic geometry. It is hoped that the basic text can be read by one equipped with a first course in algebraic geometry, with occasional use of the two appen dices. Some of the examples, and a few of the later sections, require more spe cialized knowledge. The text is designed so that one who understands the con structions and grants the main theorems of the first six chapters can read other chapters separately. Frequent parenthetical references to previous sections are included for such readers. The summaries which begin each chapter should fa cilitate use as a reference.
Landmark Writings in Western Mathematics 1640-1940
Author: Ivor Grattan-Guinness
Publisher: Elsevier
ISBN: 0080457444
Category : Mathematics
Languages : en
Pages : 1042
Book Description
This book contains around 80 articles on major writings in mathematics published between 1640 and 1940. All aspects of mathematics are covered: pure and applied, probability and statistics, foundations and philosophy. Sometimes two writings from the same period and the same subject are taken together. The biography of the author(s) is recorded, and the circumstances of the preparation of the writing are given. When the writing is of some lengths an analytical table of its contents is supplied. The contents of the writing is reviewed, and its impact described, at least for the immediate decades. Each article ends with a bibliography of primary and secondary items. - First book of its kind - Covers the period 1640-1940 of massive development in mathematics - Describes many of the main writings of mathematics - Articles written by specialists in their field
Publisher: Elsevier
ISBN: 0080457444
Category : Mathematics
Languages : en
Pages : 1042
Book Description
This book contains around 80 articles on major writings in mathematics published between 1640 and 1940. All aspects of mathematics are covered: pure and applied, probability and statistics, foundations and philosophy. Sometimes two writings from the same period and the same subject are taken together. The biography of the author(s) is recorded, and the circumstances of the preparation of the writing are given. When the writing is of some lengths an analytical table of its contents is supplied. The contents of the writing is reviewed, and its impact described, at least for the immediate decades. Each article ends with a bibliography of primary and secondary items. - First book of its kind - Covers the period 1640-1940 of massive development in mathematics - Describes many of the main writings of mathematics - Articles written by specialists in their field
The History of Mathematics
Author: David M. Burton
Publisher: WCB/McGraw-Hill
ISBN:
Category : Mathematics
Languages : en
Pages : 712
Book Description
This text is designed for the junior/senior mathematics major who intends to teach mathematics in high school or college. It concentrates on the history of those topics typically covered in an undergraduate curriculum or in elementary schools or high schools. At least one year of calculus is a prerequisite for this course. This book contains enough material for a 2 semester course but it is flexible enough to be used in the more common 1 semester course.
Publisher: WCB/McGraw-Hill
ISBN:
Category : Mathematics
Languages : en
Pages : 712
Book Description
This text is designed for the junior/senior mathematics major who intends to teach mathematics in high school or college. It concentrates on the history of those topics typically covered in an undergraduate curriculum or in elementary schools or high schools. At least one year of calculus is a prerequisite for this course. This book contains enough material for a 2 semester course but it is flexible enough to be used in the more common 1 semester course.
The Learning and Teaching of Geometry in Secondary Schools
Author: Pat Herbst
Publisher: Routledge
ISBN: 1351973525
Category : Education
Languages : en
Pages : 405
Book Description
IMPACT (Interweaving Mathematics Pedagogy and Content for Teaching) is an exciting new series of texts for teacher education which aims to advance the learning and teaching of mathematics by integrating mathematics content with the broader research and theoretical base of mathematics education. The Learning and Teaching of Geometry in Secondary Schools reviews past and present research on the teaching and learning of geometry in secondary schools and proposes an approach for design research on secondary geometry instruction. Areas covered include: teaching and learning secondary geometry through history; the representations of geometric figures; students’ cognition in geometry; teacher knowledge, practice and, beliefs; teaching strategies, instructional improvement, and classroom interventions; research designs and problems for secondary geometry. Drawing on a team of international authors, this new text will be essential reading for experienced teachers of mathematics, graduate students, curriculum developers, researchers, and all those interested in exploring students’ study of geometry in secondary schools.
Publisher: Routledge
ISBN: 1351973525
Category : Education
Languages : en
Pages : 405
Book Description
IMPACT (Interweaving Mathematics Pedagogy and Content for Teaching) is an exciting new series of texts for teacher education which aims to advance the learning and teaching of mathematics by integrating mathematics content with the broader research and theoretical base of mathematics education. The Learning and Teaching of Geometry in Secondary Schools reviews past and present research on the teaching and learning of geometry in secondary schools and proposes an approach for design research on secondary geometry instruction. Areas covered include: teaching and learning secondary geometry through history; the representations of geometric figures; students’ cognition in geometry; teacher knowledge, practice and, beliefs; teaching strategies, instructional improvement, and classroom interventions; research designs and problems for secondary geometry. Drawing on a team of international authors, this new text will be essential reading for experienced teachers of mathematics, graduate students, curriculum developers, researchers, and all those interested in exploring students’ study of geometry in secondary schools.
Our Mathematical Universe
Author: Max Tegmark
Publisher: Vintage
ISBN: 0307744256
Category : Science
Languages : en
Pages : 434
Book Description
Max Tegmark leads us on an astonishing journey through past, present and future, and through the physics, astronomy and mathematics that are the foundation of his work, most particularly his hypothesis that our physical reality is a mathematical structure and his theory of the ultimate multiverse. In a dazzling combination of both popular and groundbreaking science, he not only helps us grasp his often mind-boggling theories, but he also shares with us some of the often surprising triumphs and disappointments that have shaped his life as a scientist. Fascinating from first to last—this is a book that has already prompted the attention and admiration of some of the most prominent scientists and mathematicians.
Publisher: Vintage
ISBN: 0307744256
Category : Science
Languages : en
Pages : 434
Book Description
Max Tegmark leads us on an astonishing journey through past, present and future, and through the physics, astronomy and mathematics that are the foundation of his work, most particularly his hypothesis that our physical reality is a mathematical structure and his theory of the ultimate multiverse. In a dazzling combination of both popular and groundbreaking science, he not only helps us grasp his often mind-boggling theories, but he also shares with us some of the often surprising triumphs and disappointments that have shaped his life as a scientist. Fascinating from first to last—this is a book that has already prompted the attention and admiration of some of the most prominent scientists and mathematicians.