Author: James A. Jacobs
Publisher: Prentice Hall
ISBN: 9780132780452
Category : Technology & Engineering
Languages : en
Pages : 489
Book Description
Engineering Materials Technology
Author: James A. Jacobs
Publisher: Prentice Hall
ISBN: 9780132780452
Category : Technology & Engineering
Languages : en
Pages : 489
Book Description
Publisher: Prentice Hall
ISBN: 9780132780452
Category : Technology & Engineering
Languages : en
Pages : 489
Book Description
Handbook Of Green Materials: Processing Technologies, Properties And Applications (In 4 Volumes)
Author: Kristiina Oksman
Publisher: World Scientific
ISBN: 9814566470
Category : Science
Languages : en
Pages : 1124
Book Description
Green materials and green nanotechnology have gained widespread interest over the last 15 years; first in academia, then in related industries in the last few years.The Handbook of Green Materials serves as reference literature for undergraduates and graduates studying materials science and engineering, composite materials, chemical engineering, bioengineering and materials physics; and for researchers, professional engineers and consultants from polymer or forest industries who encounter biobased nanomaterials, bionanocomposites, self- and direct-assembled nanostructures and green composite materials in their lines of work.This four-volume set contains material ranging from basic, background information on the fields discussed, to reports on the latest research and industrial activities, and finally the works by contributing authors who are prominent experts of the subjects they address in this set.The four volumes comprise of:The first volume explains the structure of cellulose; different sources of raw material; the isolation/separation processes of nanomaterials from different material sources; and properties and characteristics of cellulose nanofibers and nanocrystals (starch nanomaterials). Information on the different characterization methods and the most important properties of biobased nanomaterials are also covered. The industrial point of view regarding both the processability and access of these nanomaterials, as well as large scale manufacturing and their industrial application is discussed — particularly in relation to the case of the paper industry.The second volume expounds on different bionanocomposites based on cellulose nanofibers or nanocrystals and their preparation/manufacturing processes. It also provides information on different characterization methods and the most important properties of bionanocomposites, as well as techniques of modeling the mechanical properties of nanocomposites. This volume presents the industrial point of view regarding large scale manufacturing and their applications from the perspective of their medical uses in printed electronics and in adhesives.The third volume deals with the ability of bionanomaterials to self-assemble in either liquids or forming organized solid materials. The chemistry of cellulose nanomaterials and chemical modifications as well as different assembling techniques and used characterization methods, and the most important properties which can be achieved by self-assembly, are described. The chapters, for example, discuss subjects such as ultra-light biobased aerogels based on cellulose and chitin, thin films suitable as barrier layers, self-sensing nanomaterials, and membranes for water purification.The fourth volume reviews green composite materials — including green raw materials — such as biobased carbon fibers, regenerated cellulose fibers and thermoplastic and thermoset polymers (e.g. PLA, bio-based polyolefines, polysaccharide polymers, natural rubber, bio-based polyurethane, lignin polymer, and furfurylalchohol). The most important composite processing technologies are described, including: prepregs of green composites, compounding, liquid composite molding, foaming, and compression molding. Industrial applications, especially for green transportation and the electronics industry, are also described.This four-volume set is a must-have for anyone keen to acquire knowledge on novel bionanomaterials — including structure-property correlations, isolation and purification processes of nanofibers and nanocrystals, their important characteristics, processing technologies, industrial up-scaling and suitable industry applications. The handbook is a useful reference not only for teaching activities but also for researchers who are working in this field.
Publisher: World Scientific
ISBN: 9814566470
Category : Science
Languages : en
Pages : 1124
Book Description
Green materials and green nanotechnology have gained widespread interest over the last 15 years; first in academia, then in related industries in the last few years.The Handbook of Green Materials serves as reference literature for undergraduates and graduates studying materials science and engineering, composite materials, chemical engineering, bioengineering and materials physics; and for researchers, professional engineers and consultants from polymer or forest industries who encounter biobased nanomaterials, bionanocomposites, self- and direct-assembled nanostructures and green composite materials in their lines of work.This four-volume set contains material ranging from basic, background information on the fields discussed, to reports on the latest research and industrial activities, and finally the works by contributing authors who are prominent experts of the subjects they address in this set.The four volumes comprise of:The first volume explains the structure of cellulose; different sources of raw material; the isolation/separation processes of nanomaterials from different material sources; and properties and characteristics of cellulose nanofibers and nanocrystals (starch nanomaterials). Information on the different characterization methods and the most important properties of biobased nanomaterials are also covered. The industrial point of view regarding both the processability and access of these nanomaterials, as well as large scale manufacturing and their industrial application is discussed — particularly in relation to the case of the paper industry.The second volume expounds on different bionanocomposites based on cellulose nanofibers or nanocrystals and their preparation/manufacturing processes. It also provides information on different characterization methods and the most important properties of bionanocomposites, as well as techniques of modeling the mechanical properties of nanocomposites. This volume presents the industrial point of view regarding large scale manufacturing and their applications from the perspective of their medical uses in printed electronics and in adhesives.The third volume deals with the ability of bionanomaterials to self-assemble in either liquids or forming organized solid materials. The chemistry of cellulose nanomaterials and chemical modifications as well as different assembling techniques and used characterization methods, and the most important properties which can be achieved by self-assembly, are described. The chapters, for example, discuss subjects such as ultra-light biobased aerogels based on cellulose and chitin, thin films suitable as barrier layers, self-sensing nanomaterials, and membranes for water purification.The fourth volume reviews green composite materials — including green raw materials — such as biobased carbon fibers, regenerated cellulose fibers and thermoplastic and thermoset polymers (e.g. PLA, bio-based polyolefines, polysaccharide polymers, natural rubber, bio-based polyurethane, lignin polymer, and furfurylalchohol). The most important composite processing technologies are described, including: prepregs of green composites, compounding, liquid composite molding, foaming, and compression molding. Industrial applications, especially for green transportation and the electronics industry, are also described.This four-volume set is a must-have for anyone keen to acquire knowledge on novel bionanomaterials — including structure-property correlations, isolation and purification processes of nanofibers and nanocrystals, their important characteristics, processing technologies, industrial up-scaling and suitable industry applications. The handbook is a useful reference not only for teaching activities but also for researchers who are working in this field.
Guide to Biomass comminution: material properties, machinery, principles of the process and fundamentals of process modelling
Author: Lukasz Niedzwiecki
Publisher: diplom.de
ISBN: 3863419383
Category : Science
Languages : en
Pages : 70
Book Description
This study aims to derive a qualitative model for energy requirements of the wood chipping process. A relationship is shown between energy requirements and properties of biomass, which is a quite variable material.The relationship between comminution machinery and energy which is necessary for the process is highlighted. The derivation of the model is focused on chipping, but it is generally possible to make it available for both different types of biomass (f. ex. agricultural residues)and different types of comminution machinery (f. ex. hammermills) by using different material properties adjusted to the machinery mechanics. The properties which are used in the derivation are meant to be easy to measure. Furthermore, the model is meant to be used as a base for a quantitative model that, thanks to measurements taken from real comminution machinery and thanks to using wood with known properties, could answer two important questions: - Would hypothetical changes in the desired size of output material increase the total system efficiency, taking into consideration the lowest efficiency of the combustion process (e.g., higher amounts of unburned fuel)? - Considering the energy used for the process, how can comminution as an operation in the biofuel supply chain be optimised? Answers for the above questions could highlight new possibilities in terms of further energy savings and a maximising of the energy efficiency of the bioenergy sector. Furthermore, the results could motivate optimized choices of comminution machinery for the biofuel supply chain as well as for other applications. Another important feature of this study is its unique holistic point of view that takes into consideration aspects from the fields of mechanics, material sciences and natural sciences to deliver the full picture to the reader.
Publisher: diplom.de
ISBN: 3863419383
Category : Science
Languages : en
Pages : 70
Book Description
This study aims to derive a qualitative model for energy requirements of the wood chipping process. A relationship is shown between energy requirements and properties of biomass, which is a quite variable material.The relationship between comminution machinery and energy which is necessary for the process is highlighted. The derivation of the model is focused on chipping, but it is generally possible to make it available for both different types of biomass (f. ex. agricultural residues)and different types of comminution machinery (f. ex. hammermills) by using different material properties adjusted to the machinery mechanics. The properties which are used in the derivation are meant to be easy to measure. Furthermore, the model is meant to be used as a base for a quantitative model that, thanks to measurements taken from real comminution machinery and thanks to using wood with known properties, could answer two important questions: - Would hypothetical changes in the desired size of output material increase the total system efficiency, taking into consideration the lowest efficiency of the combustion process (e.g., higher amounts of unburned fuel)? - Considering the energy used for the process, how can comminution as an operation in the biofuel supply chain be optimised? Answers for the above questions could highlight new possibilities in terms of further energy savings and a maximising of the energy efficiency of the bioenergy sector. Furthermore, the results could motivate optimized choices of comminution machinery for the biofuel supply chain as well as for other applications. Another important feature of this study is its unique holistic point of view that takes into consideration aspects from the fields of mechanics, material sciences and natural sciences to deliver the full picture to the reader.
Composite Materials Processing Using Microwave Heating Technology
Author: Manoj Kumar Singh
Publisher: Springer Nature
ISBN: 9819727723
Category :
Languages : en
Pages : 292
Book Description
Publisher: Springer Nature
ISBN: 9819727723
Category :
Languages : en
Pages : 292
Book Description
PROPERTIES AND FORMATION TECHNOLOGY OF GLUTINOUS BIOCOMPOSITE MATERIALS
Author: Kashytskyi V.P., Sadova O.L., Malets V.M.
Publisher: International Science Group
ISBN:
Category : Science
Languages : en
Pages : 108
Book Description
The monograph presents the general characteristics and classification of biocomposite materials based on natural components, their advantages and scope of application are indicated. The mechanical properties of biocomposite materials based on a glutinous matrix and plant fillers were studied. The content of components was optimized. The formation modes of biocomposites with processing of the composition in physical fields were determined. The technology of recycling glutinous biocomposite products by thermo-mechanical processing of secondary raw materials has been developed. The monograph is intended for specialists in materials science of polymer composites and biocomposite materials. It will also be useful for graduate students, students, materials scientists, technologists and engineers of technical specialties.
Publisher: International Science Group
ISBN:
Category : Science
Languages : en
Pages : 108
Book Description
The monograph presents the general characteristics and classification of biocomposite materials based on natural components, their advantages and scope of application are indicated. The mechanical properties of biocomposite materials based on a glutinous matrix and plant fillers were studied. The content of components was optimized. The formation modes of biocomposites with processing of the composition in physical fields were determined. The technology of recycling glutinous biocomposite products by thermo-mechanical processing of secondary raw materials has been developed. The monograph is intended for specialists in materials science of polymer composites and biocomposite materials. It will also be useful for graduate students, students, materials scientists, technologists and engineers of technical specialties.
Optimization of Manufacturing Processes
Author: Kapil Gupta
Publisher: Springer
ISBN: 3030196380
Category : Technology & Engineering
Languages : en
Pages : 237
Book Description
This book provides a detailed understanding of optimization methods as they are implemented in a variety of manufacturing, fabrication and machining processes. It covers the implementation of statistical methods, multi-criteria decision making methods and evolutionary techniques for single and multi-objective optimization to improve quality, productivity, and sustainability in manufacturing. It reports on the theoretical aspects, special features, recent research and latest development in the field. Optimization of Manufacturing Processes is a valuable source of information for researchers and practitioners, as it fills the gap where no dedicated book is available on intelligent manufacturing/modeling and optimization in manufacturing. Readers will develop an understanding of the implementation of statistical and evolutionary techniques for modeling and optimization in manufacturing.
Publisher: Springer
ISBN: 3030196380
Category : Technology & Engineering
Languages : en
Pages : 237
Book Description
This book provides a detailed understanding of optimization methods as they are implemented in a variety of manufacturing, fabrication and machining processes. It covers the implementation of statistical methods, multi-criteria decision making methods and evolutionary techniques for single and multi-objective optimization to improve quality, productivity, and sustainability in manufacturing. It reports on the theoretical aspects, special features, recent research and latest development in the field. Optimization of Manufacturing Processes is a valuable source of information for researchers and practitioners, as it fills the gap where no dedicated book is available on intelligent manufacturing/modeling and optimization in manufacturing. Readers will develop an understanding of the implementation of statistical and evolutionary techniques for modeling and optimization in manufacturing.
Advances in Materials Processing Technologies, MESIC2011
Author: Mariano Marcos
Publisher: Trans Tech Publications Ltd
ISBN: 3038137960
Category : Technology & Engineering
Languages : en
Pages : 274
Book Description
Selected, peer reviewed papers from the 4th Manufacturing Engineering Society International Conference, September 2011, Cadiz, Spain
Publisher: Trans Tech Publications Ltd
ISBN: 3038137960
Category : Technology & Engineering
Languages : en
Pages : 274
Book Description
Selected, peer reviewed papers from the 4th Manufacturing Engineering Society International Conference, September 2011, Cadiz, Spain
Mechanical Properties in Progressive Mechanically Processed Metallic Materials
Author: Radim Kocich
Publisher: MDPI
ISBN: 3036500766
Category : Technology & Engineering
Languages : en
Pages : 256
Book Description
The demands on innovative materials given by the ever-increasing requirements of contemporary industry require the use of high-performance engineering materials. The properties of materials and alloys are a result of their structures, which can primarily be affected by the preparation/production process. However, the production of materials featuring high levels of the required properties without the necessity to use costly alloying elements or time- and money-demanding heat treatment technologies typically used to enhance the mechanical properties of metallic materials (especially specific strength) still remains a challenge. The introduction of thermomechanical treatment represented a breakthrough in grain refinement, consequently leading to significant improvement of the mechanical properties of metallic materials. Contrary to conventional production technologies, the main advantage of such treatment is the possibility to precisely control structural phenomena that affect the final mechanical and utility properties. Thermomechanical treatment can only decrease the grain size to the scale of microns. However, further research devoted to pushing materials’ performance beyond the limits led to the introduction of severe plastic deformation (SPD) methods providing producers with the ability to acquire ultra-fine-grained and nanoscaled metallic materials with superior mechanical properties. SPD methods can be performed with the help of conventional forming equipment; however, many newly designed processes have also been introduced.
Publisher: MDPI
ISBN: 3036500766
Category : Technology & Engineering
Languages : en
Pages : 256
Book Description
The demands on innovative materials given by the ever-increasing requirements of contemporary industry require the use of high-performance engineering materials. The properties of materials and alloys are a result of their structures, which can primarily be affected by the preparation/production process. However, the production of materials featuring high levels of the required properties without the necessity to use costly alloying elements or time- and money-demanding heat treatment technologies typically used to enhance the mechanical properties of metallic materials (especially specific strength) still remains a challenge. The introduction of thermomechanical treatment represented a breakthrough in grain refinement, consequently leading to significant improvement of the mechanical properties of metallic materials. Contrary to conventional production technologies, the main advantage of such treatment is the possibility to precisely control structural phenomena that affect the final mechanical and utility properties. Thermomechanical treatment can only decrease the grain size to the scale of microns. However, further research devoted to pushing materials’ performance beyond the limits led to the introduction of severe plastic deformation (SPD) methods providing producers with the ability to acquire ultra-fine-grained and nanoscaled metallic materials with superior mechanical properties. SPD methods can be performed with the help of conventional forming equipment; however, many newly designed processes have also been introduced.
Processing And Properties Of High-tc Superconductors - Volume 1: Bulk Materials
Author: Sungho Jin
Publisher: World Scientific
ISBN: 9814566861
Category : Science
Languages : en
Pages : 494
Book Description
The purpose of this book is to offer the high-Tc community a comprehensive, state-of-the-art review on bulk processing with the hope that the book would serve in part as an updated review for expert scientists and in part as a reference/text book on processing for young scientists/graduate students and those who wish to keep track of advances and technological trends in HTSC.Readers in the superconductor science/technology/education areas will find this book prepared by the world's leading experts informative and useful.
Publisher: World Scientific
ISBN: 9814566861
Category : Science
Languages : en
Pages : 494
Book Description
The purpose of this book is to offer the high-Tc community a comprehensive, state-of-the-art review on bulk processing with the hope that the book would serve in part as an updated review for expert scientists and in part as a reference/text book on processing for young scientists/graduate students and those who wish to keep track of advances and technological trends in HTSC.Readers in the superconductor science/technology/education areas will find this book prepared by the world's leading experts informative and useful.
Unit Manufacturing Processes
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309176670
Category : Technology & Engineering
Languages : en
Pages : 228
Book Description
Manufacturing, reduced to its simplest form, involves the sequencing of product forms through a number of different processes. Each individual step, known as an unit manufacturing process, can be viewed as the fundamental building block of a nation's manufacturing capability. A committee of the National Research Council has prepared a report to help define national priorities for research in unit processes. It contains an organizing framework for unit process families, criteria for determining the criticality of a process or manufacturing technology, examples of research opportunities, and a prioritized list of enabling technologies that can lead to the manufacture of products of superior quality at competitive costs. The study was performed under the sponsorship of the National Science Foundation and the Defense Department's Manufacturing Technology Program.
Publisher: National Academies Press
ISBN: 0309176670
Category : Technology & Engineering
Languages : en
Pages : 228
Book Description
Manufacturing, reduced to its simplest form, involves the sequencing of product forms through a number of different processes. Each individual step, known as an unit manufacturing process, can be viewed as the fundamental building block of a nation's manufacturing capability. A committee of the National Research Council has prepared a report to help define national priorities for research in unit processes. It contains an organizing framework for unit process families, criteria for determining the criticality of a process or manufacturing technology, examples of research opportunities, and a prioritized list of enabling technologies that can lead to the manufacture of products of superior quality at competitive costs. The study was performed under the sponsorship of the National Science Foundation and the Defense Department's Manufacturing Technology Program.