Massive Graph Analysis in the Data Stream Model

Massive Graph Analysis in the Data Stream Model PDF Author: Sofya Vorotnikova
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Graphs have become an abstraction of choice in modeling highly-structured data. The need to compute graph-theoretic properties of datasets arises in many applications that involve entities and pairwise relations between them. However, in practice the datasets in question can be too large to be stored in main memory, distributed across many machines, or changing over time. Moreover, in an increasing number of applications the algorithm has to make real time decisions as the data arrives, which puts further limitations on the time and space that can realistically be used. These characteristics render classical algorithmic approaches obsolete and necessitate the development of new techniques. The streaming model of computation takes these challenges into account, providing a trade-off between the resources used by the algorithm and its accuracy. A graph stream is defined by a sequence of edge insertions (and sometimes deletions) into an initially empty graph. The objective is to compute a certain property of the graph at the end of the stream while minimizing the amount of space the algorithm uses. In this model, we explore fundamental graph-theoretic problems that also serve as important primitives in massive graph analysis. Our results can be divided into three main categories: Finding large matchings and related problems. We describe two optimal algorithms for finding large matchings in dynamic (insert-delete) graph streams---an approximation of an arbitrary maximum matching and an exact algorithm under the assumption that the matching is of certain size. We also show how the techniques developed in these algorithms can be used to solve a variety of related problems such as vertex cover and hitting set in hypergraphs. We then concentrate on estimating just the size of the matching and present a series of sublinear results for the class of low arboricity graphs. Counting the number of cycles. We fully resolve in which settings there exist algorithms approximating the number of fixed length cycles that do not store the entire graph. For cycles of length five or greater, we show that no such algorithms exist. For triangles and four-cycles, we describe several counting results and a few lower bounds for the insert-only model, considering such parameters as the number of passes taken over the stream and its ordering. Vertex ordering problems in directed graphs. We consider such fundamental problems as topologically sorting a directed acyclic graph (DAG), checking whether the input is in fact a DAG, and finding a minimum feedback arc set. It can be shown that when the input graph is arbitrary, these problems have high space complexity in the streaming model. Thus, we concentrate on designing algorithms for tournaments and a certain family of random graphs. Together, these results complement the much more mature body of work on algorithms for undirected graph streams.

Massive Graph Analysis in the Data Stream Model

Massive Graph Analysis in the Data Stream Model PDF Author: Sofya Vorotnikova
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Graphs have become an abstraction of choice in modeling highly-structured data. The need to compute graph-theoretic properties of datasets arises in many applications that involve entities and pairwise relations between them. However, in practice the datasets in question can be too large to be stored in main memory, distributed across many machines, or changing over time. Moreover, in an increasing number of applications the algorithm has to make real time decisions as the data arrives, which puts further limitations on the time and space that can realistically be used. These characteristics render classical algorithmic approaches obsolete and necessitate the development of new techniques. The streaming model of computation takes these challenges into account, providing a trade-off between the resources used by the algorithm and its accuracy. A graph stream is defined by a sequence of edge insertions (and sometimes deletions) into an initially empty graph. The objective is to compute a certain property of the graph at the end of the stream while minimizing the amount of space the algorithm uses. In this model, we explore fundamental graph-theoretic problems that also serve as important primitives in massive graph analysis. Our results can be divided into three main categories: Finding large matchings and related problems. We describe two optimal algorithms for finding large matchings in dynamic (insert-delete) graph streams---an approximation of an arbitrary maximum matching and an exact algorithm under the assumption that the matching is of certain size. We also show how the techniques developed in these algorithms can be used to solve a variety of related problems such as vertex cover and hitting set in hypergraphs. We then concentrate on estimating just the size of the matching and present a series of sublinear results for the class of low arboricity graphs. Counting the number of cycles. We fully resolve in which settings there exist algorithms approximating the number of fixed length cycles that do not store the entire graph. For cycles of length five or greater, we show that no such algorithms exist. For triangles and four-cycles, we describe several counting results and a few lower bounds for the insert-only model, considering such parameters as the number of passes taken over the stream and its ordering. Vertex ordering problems in directed graphs. We consider such fundamental problems as topologically sorting a directed acyclic graph (DAG), checking whether the input is in fact a DAG, and finding a minimum feedback arc set. It can be shown that when the input graph is arbitrary, these problems have high space complexity in the streaming model. Thus, we concentrate on designing algorithms for tournaments and a certain family of random graphs. Together, these results complement the much more mature body of work on algorithms for undirected graph streams.

Massive Graph Analytics

Massive Graph Analytics PDF Author: David A. Bader
Publisher: CRC Press
ISBN: 1000538613
Category : Business & Economics
Languages : en
Pages : 632

Get Book Here

Book Description
"Graphs. Such a simple idea. Map a problem onto a graph then solve it by searching over the graph or by exploring the structure of the graph. What could be easier? Turns out, however, that working with graphs is a vast and complex field. Keeping up is challenging. To help keep up, you just need an editor who knows most people working with graphs, and have that editor gather nearly 70 researchers to summarize their work with graphs. The result is the book Massive Graph Analytics." — Timothy G. Mattson, Senior Principal Engineer, Intel Corp Expertise in massive-scale graph analytics is key for solving real-world grand challenges from healthcare to sustainability to detecting insider threats, cyber defense, and more. This book provides a comprehensive introduction to massive graph analytics, featuring contributions from thought leaders across academia, industry, and government. Massive Graph Analytics will be beneficial to students, researchers, and practitioners in academia, national laboratories, and industry who wish to learn about the state-of-the-art algorithms, models, frameworks, and software in massive-scale graph analytics.

Frontiers in Massive Data Analysis

Frontiers in Massive Data Analysis PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309287812
Category : Mathematics
Languages : en
Pages : 191

Get Book Here

Book Description
Data mining of massive data sets is transforming the way we think about crisis response, marketing, entertainment, cybersecurity and national intelligence. Collections of documents, images, videos, and networks are being thought of not merely as bit strings to be stored, indexed, and retrieved, but as potential sources of discovery and knowledge, requiring sophisticated analysis techniques that go far beyond classical indexing and keyword counting, aiming to find relational and semantic interpretations of the phenomena underlying the data. Frontiers in Massive Data Analysis examines the frontier of analyzing massive amounts of data, whether in a static database or streaming through a system. Data at that scale-terabytes and petabytes-is increasingly common in science (e.g., particle physics, remote sensing, genomics), Internet commerce, business analytics, national security, communications, and elsewhere. The tools that work to infer knowledge from data at smaller scales do not necessarily work, or work well, at such massive scale. New tools, skills, and approaches are necessary, and this report identifies many of them, plus promising research directions to explore. Frontiers in Massive Data Analysis discusses pitfalls in trying to infer knowledge from massive data, and it characterizes seven major classes of computation that are common in the analysis of massive data. Overall, this report illustrates the cross-disciplinary knowledge-from computer science, statistics, machine learning, and application disciplines-that must be brought to bear to make useful inferences from massive data.

Graph Algorithms for Data Science

Graph Algorithms for Data Science PDF Author: Tomaž Bratanic
Publisher: Simon and Schuster
ISBN: 1617299464
Category : Computers
Languages : en
Pages : 350

Get Book Here

Book Description
Graph Algorithms for Data Science teaches you how to construct graphs from both structured and unstructured data. You'll learn how the flexible Cypher query language can be used to easily manipulate graph structures, and extract amazing insights. Graph Algorithms for Data Science is a hands-on guide to working with graph-based data in applications. It's filled with fascinating and fun projects, demonstrating the ins-and-outs of graphs. You'll gain practical skills by analyzing Twitter, building graphs with NLP techniques, and much more. These powerful graph algorithms are explained in clear, jargon-free text and illustrations that makes them easy to apply to your own projects.

Mining of Massive Datasets

Mining of Massive Datasets PDF Author: Jure Leskovec
Publisher: Cambridge University Press
ISBN: 1107077230
Category : Computers
Languages : en
Pages : 480

Get Book Here

Book Description
Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets.

Large-scale Graph Analysis: System, Algorithm and Optimization

Large-scale Graph Analysis: System, Algorithm and Optimization PDF Author: Yingxia Shao
Publisher: Springer Nature
ISBN: 9811539286
Category : Computers
Languages : en
Pages : 154

Get Book Here

Book Description
This book introduces readers to a workload-aware methodology for large-scale graph algorithm optimization in graph-computing systems, and proposes several optimization techniques that can enable these systems to handle advanced graph algorithms efficiently. More concretely, it proposes a workload-aware cost model to guide the development of high-performance algorithms. On the basis of the cost model, the book subsequently presents a system-level optimization resulting in a partition-aware graph-computing engine, PAGE. In addition, it presents three efficient and scalable advanced graph algorithms – the subgraph enumeration, cohesive subgraph detection, and graph extraction algorithms. This book offers a valuable reference guide for junior researchers, covering the latest advances in large-scale graph analysis; and for senior researchers, sharing state-of-the-art solutions based on advanced graph algorithms. In addition, all readers will find a workload-aware methodology for designing efficient large-scale graph algorithms.

Data Streams

Data Streams PDF Author: S. Muthukrishnan
Publisher: Now Publishers Inc
ISBN: 193301914X
Category : Computers
Languages : en
Pages : 136

Get Book Here

Book Description
In the data stream scenario, input arrives very rapidly and there is limited memory to store the input. Algorithms have to work with one or few passes over the data, space less than linear in the input size or time significantly less than the input size. In the past few years, a new theory has emerged for reasoning about algorithms that work within these constraints on space, time, and number of passes. Some of the methods rely on metric embeddings, pseudo-random computations, sparse approximation theory and communication complexity. The applications for this scenario include IP network traffic analysis, mining text message streams and processing massive data sets in general. Researchers in Theoretical Computer Science, Databases, IP Networking and Computer Systems are working on the data stream challenges.

Systems for Big Graph Analytics

Systems for Big Graph Analytics PDF Author: Da Yan
Publisher: Springer
ISBN: 3319582178
Category : Computers
Languages : en
Pages : 93

Get Book Here

Book Description
There has been a surging interest in developing systems for analyzing big graphs generated by real applications, such as online social networks and knowledge graphs. This book aims to help readers get familiar with the computation models of various graph processing systems with minimal time investment. This book is organized into three parts, addressing three popular computation models for big graph analytics: think-like-a-vertex, think-likea- graph, and think-like-a-matrix. While vertex-centric systems have gained great popularity, the latter two models are currently being actively studied to solve graph problems that cannot be efficiently solved in vertex-centric model, and are the promising next-generation models for big graph analytics. For each part, the authors introduce the state-of-the-art systems, emphasizing on both their technical novelties and hands-on experiences of using them. The systems introduced include Giraph, Pregel+, Blogel, GraphLab, CraphChi, X-Stream, Quegel, SystemML, etc. Readers will learn how to design graph algorithms in various graph analytics systems, and how to choose the most appropriate system for a particular application at hand. The target audience for this book include beginners who are interested in using a big graph analytics system, and students, researchers and practitioners who would like to build their own graph analytics systems with new features.

Data Stream Algorithms for Large Graphs and High Dimensional Data

Data Stream Algorithms for Large Graphs and High Dimensional Data PDF Author: Hoa Vu
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
In contrast to the traditional random access memory computational model where the entire input is available in the working memory, the data stream model only provides sequential access to the input. The data stream model is a natural framework to handle large and dynamic data. In this model, we focus on designing algorithms that use sublinear memory and a small number of passes over the stream. Other desirable properties include fast update time, query time, and post processing time. In this dissertation, we consider different problems in graph theory, combinatorial optimization, and high dimensional data processing. The first part of this dissertation focuses on algorithms for graph theory and combinatorial optimization. We present new results for the problems of finding the densest subgraph, counting the number of triangles, finding max cut with bounded components, and finding the maximum $k$ set coverage. The second part of this dissertation considers problems in high dimensional data streams. In this setting, each stream item consists of multiple coordinates corresponding to different attributes. We consider the problem of testing or learning about the relationships among the attributes, and the problem of finding heavy hitters in subsets of attributes.

Statistical Analysis of Massive Data Streams

Statistical Analysis of Massive Data Streams PDF Author:
Publisher: National Academies Press
ISBN: 0309093082
Category : Computers
Languages : en
Pages : 395

Get Book Here

Book Description
Massive data streams, large quantities of data that arrive continuously, are becoming increasingly commonplace in many areas of science and technology. Consequently development of analytical methods for such streams is of growing importance. To address this issue, the National Security Agency asked the NRC to hold a workshop to explore methods for analysis of streams of data so as to stimulate progress in the field. This report presents the results of that workshop. It provides presentations that focused on five different research areas where massive data streams are present: atmospheric and meteorological data; high-energy physics; integrated data systems; network traffic; and mining commercial data streams. The goals of the report are to improve communication among researchers in the field and to increase relevant statistical science activity.