Manifolds, Tensors and Forms

Manifolds, Tensors and Forms PDF Author: Paul Renteln
Publisher: Cambridge University Press
ISBN: 1107042194
Category : Mathematics
Languages : en
Pages : 343

Get Book

Book Description
Comprehensive treatment of the essentials of modern differential geometry and topology for graduate students in mathematics and the physical sciences.

Manifolds, Tensors and Forms

Manifolds, Tensors and Forms PDF Author: Paul Renteln
Publisher: Cambridge University Press
ISBN: 1107042194
Category : Mathematics
Languages : en
Pages : 343

Get Book

Book Description
Comprehensive treatment of the essentials of modern differential geometry and topology for graduate students in mathematics and the physical sciences.

Manifolds, Tensor Analysis, and Applications

Manifolds, Tensor Analysis, and Applications PDF Author: Ralph Abraham
Publisher: Springer Science & Business Media
ISBN: 1461210291
Category : Mathematics
Languages : en
Pages : 666

Get Book

Book Description
The purpose of this book is to provide core material in nonlinear analysis for mathematicians, physicists, engineers, and mathematical biologists. The main goal is to provide a working knowledge of manifolds, dynamical systems, tensors, and differential forms. Some applications to Hamiltonian mechanics, fluid me chanics, electromagnetism, plasma dynamics and control thcory arc given in Chapter 8, using both invariant and index notation. The current edition of the book does not deal with Riemannian geometry in much detail, and it does not treat Lie groups, principal bundles, or Morse theory. Some of this is planned for a subsequent edition. Meanwhile, the authors will make available to interested readers supplementary chapters on Lie Groups and Differential Topology and invite comments on the book's contents and development. Throughout the text supplementary topics are given, marked with the symbols ~ and {l:;J. This device enables the reader to skip various topics without disturbing the main flow of the text. Some of these provide additional background material intended for completeness, to minimize the necessity of consulting too many outside references. We treat finite and infinite-dimensional manifolds simultaneously. This is partly for efficiency of exposition. Without advanced applications, using manifolds of mappings, the study of infinite-dimensional manifolds can be hard to motivate.

Tensors, Differential Forms, and Variational Principles

Tensors, Differential Forms, and Variational Principles PDF Author: David Lovelock
Publisher: Courier Corporation
ISBN: 048613198X
Category : Mathematics
Languages : en
Pages : 400

Get Book

Book Description
Incisive, self-contained account of tensor analysis and the calculus of exterior differential forms, interaction between the concept of invariance and the calculus of variations. Emphasis is on analytical techniques. Includes problems.

Tensor Analysis on Manifolds

Tensor Analysis on Manifolds PDF Author: Richard L. Bishop
Publisher: Courier Corporation
ISBN: 0486139239
Category : Mathematics
Languages : en
Pages : 288

Get Book

Book Description
DIVProceeds from general to special, including chapters on vector analysis on manifolds and integration theory. /div

A Visual Introduction to Differential Forms and Calculus on Manifolds

A Visual Introduction to Differential Forms and Calculus on Manifolds PDF Author: Jon Pierre Fortney
Publisher: Springer
ISBN: 3319969927
Category : Mathematics
Languages : en
Pages : 468

Get Book

Book Description
This book explains and helps readers to develop geometric intuition as it relates to differential forms. It includes over 250 figures to aid understanding and enable readers to visualize the concepts being discussed. The author gradually builds up to the basic ideas and concepts so that definitions, when made, do not appear out of nowhere, and both the importance and role that theorems play is evident as or before they are presented. With a clear writing style and easy-to- understand motivations for each topic, this book is primarily aimed at second- or third-year undergraduate math and physics students with a basic knowledge of vector calculus and linear algebra.

Foundations of Differentiable Manifolds and Lie Groups

Foundations of Differentiable Manifolds and Lie Groups PDF Author: Frank W. Warner
Publisher: Springer Science & Business Media
ISBN: 1475717997
Category : Mathematics
Languages : en
Pages : 283

Get Book

Book Description
Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. Coverage includes differentiable manifolds, tensors and differentiable forms, Lie groups and homogenous spaces, and integration on manifolds. The book also provides a proof of the de Rham theorem via sheaf cohomology theory and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem.

Introduction to Smooth Manifolds

Introduction to Smooth Manifolds PDF Author: John M. Lee
Publisher: Springer Science & Business Media
ISBN: 0387217525
Category : Mathematics
Languages : en
Pages : 646

Get Book

Book Description
Author has written several excellent Springer books.; This book is a sequel to Introduction to Topological Manifolds; Careful and illuminating explanations, excellent diagrams and exemplary motivation; Includes short preliminary sections before each section explaining what is ahead and why

An Introduction to Manifolds

An Introduction to Manifolds PDF Author: Loring W. Tu
Publisher: Springer Science & Business Media
ISBN: 1441974008
Category : Mathematics
Languages : en
Pages : 426

Get Book

Book Description
Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.

Tensors: Geometry and Applications

Tensors: Geometry and Applications PDF Author: J. M. Landsberg
Publisher: American Mathematical Soc.
ISBN: 0821869078
Category : Mathematics
Languages : en
Pages : 464

Get Book

Book Description
Tensors are ubiquitous in the sciences. The geometry of tensors is both a powerful tool for extracting information from data sets, and a beautiful subject in its own right. This book has three intended uses: a classroom textbook, a reference work for researchers in the sciences, and an account of classical and modern results in (aspects of) the theory that will be of interest to researchers in geometry. For classroom use, there is a modern introduction to multilinear algebra and to the geometry and representation theory needed to study tensors, including a large number of exercises. For researchers in the sciences, there is information on tensors in table format for easy reference and a summary of the state of the art in elementary language. This is the first book containing many classical results regarding tensors. Particular applications treated in the book include the complexity of matrix multiplication, P versus NP, signal processing, phylogenetics, and algebraic statistics. For geometers, there is material on secant varieties, G-varieties, spaces with finitely many orbits and how these objects arise in applications, discussions of numerous open questions in geometry arising in applications, and expositions of advanced topics such as the proof of the Alexander-Hirschowitz theorem and of the Weyman-Kempf method for computing syzygies.

Manifolds and Differential Geometry

Manifolds and Differential Geometry PDF Author: Jeffrey M. Lee
Publisher: American Mathematical Society
ISBN: 1470469820
Category : Mathematics
Languages : en
Pages : 671

Get Book

Book Description
Differential geometry began as the study of curves and surfaces using the methods of calculus. In time, the notions of curve and surface were generalized along with associated notions such as length, volume, and curvature. At the same time the topic has become closely allied with developments in topology. The basic object is a smooth manifold, to which some extra structure has been attached, such as a Riemannian metric, a symplectic form, a distinguished group of symmetries, or a connection on the tangent bundle. This book is a graduate-level introduction to the tools and structures of modern differential geometry. Included are the topics usually found in a course on differentiable manifolds, such as vector bundles, tensors, differential forms, de Rham cohomology, the Frobenius theorem and basic Lie group theory. The book also contains material on the general theory of connections on vector bundles and an in-depth chapter on semi-Riemannian geometry that covers basic material about Riemannian manifolds and Lorentz manifolds. An unusual feature of the book is the inclusion of an early chapter on the differential geometry of hypersurfaces in Euclidean space. There is also a section that derives the exterior calculus version of Maxwell's equations. The first chapters of the book are suitable for a one-semester course on manifolds. There is more than enough material for a year-long course on manifolds and geometry.