Author: Mohan L.H. Kaul
Publisher: Springer Science & Business Media
ISBN: 3642831397
Category : Science
Languages : en
Pages : 1016
Book Description
" . . . . . . Nature has something more in view than that its own proper males should fecundate each blossom. " Andrew Knight Philosophical Transactions, 1799 Sterility implicating the male sex solely presents a paradoxical situation in which universality and uniqueness are harmoniously blended. It maintains a built-in outbreeding system but is not an isolating mechanism, as male steriles, the "self-emasculated" plants, outcross with their male fertile sibs normally. Both genes (nuclear and cytoplasmic) and environment, individually as well as conjointly, induce male sterility, the former being genetic and the latter nongenetic. Genetic male sterility is controlled either exclusively by nuclear genes (ms) or by the complementary action of nuclear (lr) and cytoplasmic (c) genes. The former is termed genic and the latter gene-cytoplasmic male sterility. Whereas genic male sterility exhibits Mendelian inheritance, gene-cytoplasmic male sterility is non-Mendelian, with specific transmissibility of the maternal cytoplasm type. Genetic male sterility is documented in 617 species and species crosses com prising 320 species, 162 genera and 43 families. Of these, genic male sterility occurs in 216 species and 17 species crosses and gene-cytoplasmic male sterility in 16 species and 271 species crosses. The Predominance of species exhibiting genic male sterility and of species crosses exhibiting gene-cytoplasmic male sterility is due to the fact that for the male sterility expression in the former, mutation of nuclear genes is required, but in the latter, mutations of both nuclear and cytoplasmic genes are necessary.
Male Sterility in Higher Plants
Author: Mohan L.H. Kaul
Publisher: Springer Science & Business Media
ISBN: 3642831397
Category : Science
Languages : en
Pages : 1016
Book Description
" . . . . . . Nature has something more in view than that its own proper males should fecundate each blossom. " Andrew Knight Philosophical Transactions, 1799 Sterility implicating the male sex solely presents a paradoxical situation in which universality and uniqueness are harmoniously blended. It maintains a built-in outbreeding system but is not an isolating mechanism, as male steriles, the "self-emasculated" plants, outcross with their male fertile sibs normally. Both genes (nuclear and cytoplasmic) and environment, individually as well as conjointly, induce male sterility, the former being genetic and the latter nongenetic. Genetic male sterility is controlled either exclusively by nuclear genes (ms) or by the complementary action of nuclear (lr) and cytoplasmic (c) genes. The former is termed genic and the latter gene-cytoplasmic male sterility. Whereas genic male sterility exhibits Mendelian inheritance, gene-cytoplasmic male sterility is non-Mendelian, with specific transmissibility of the maternal cytoplasm type. Genetic male sterility is documented in 617 species and species crosses com prising 320 species, 162 genera and 43 families. Of these, genic male sterility occurs in 216 species and 17 species crosses and gene-cytoplasmic male sterility in 16 species and 271 species crosses. The Predominance of species exhibiting genic male sterility and of species crosses exhibiting gene-cytoplasmic male sterility is due to the fact that for the male sterility expression in the former, mutation of nuclear genes is required, but in the latter, mutations of both nuclear and cytoplasmic genes are necessary.
Publisher: Springer Science & Business Media
ISBN: 3642831397
Category : Science
Languages : en
Pages : 1016
Book Description
" . . . . . . Nature has something more in view than that its own proper males should fecundate each blossom. " Andrew Knight Philosophical Transactions, 1799 Sterility implicating the male sex solely presents a paradoxical situation in which universality and uniqueness are harmoniously blended. It maintains a built-in outbreeding system but is not an isolating mechanism, as male steriles, the "self-emasculated" plants, outcross with their male fertile sibs normally. Both genes (nuclear and cytoplasmic) and environment, individually as well as conjointly, induce male sterility, the former being genetic and the latter nongenetic. Genetic male sterility is controlled either exclusively by nuclear genes (ms) or by the complementary action of nuclear (lr) and cytoplasmic (c) genes. The former is termed genic and the latter gene-cytoplasmic male sterility. Whereas genic male sterility exhibits Mendelian inheritance, gene-cytoplasmic male sterility is non-Mendelian, with specific transmissibility of the maternal cytoplasm type. Genetic male sterility is documented in 617 species and species crosses com prising 320 species, 162 genera and 43 families. Of these, genic male sterility occurs in 216 species and 17 species crosses and gene-cytoplasmic male sterility in 16 species and 271 species crosses. The Predominance of species exhibiting genic male sterility and of species crosses exhibiting gene-cytoplasmic male sterility is due to the fact that for the male sterility expression in the former, mutation of nuclear genes is required, but in the latter, mutations of both nuclear and cytoplasmic genes are necessary.
Molecular Biology and Biotechnology of Plant Organelles
Author: Henry Daniell, Ph.D.
Publisher: Springer Science & Business Media
ISBN: 1402031661
Category : Science
Languages : en
Pages : 671
Book Description
We have taught plant molecular biology and biotechnology at the undergraduate and graduate level for over 20 years. In the past few decades, the field of plant organelle molecular biology and biotechnology has made immense strides. From the green revolution to golden rice, plant organelles have revolutionized agriculture. Given the exponential growth in research, the problem of finding appropriate textbooks for courses in plant biotechnology and molecular biology has become a major challenge. After years of handing out photocopies of various journal articles and reviews scattered through out the print and electronic media, a serendipitous meeting occurred at the 2002 IATPC World Congress held in Orlando, Florida. After my talk and evaluating several posters presented by investigators from my laboratory, Dr. Jacco Flipsen, Publishing Manager of Kluwer Publishers asked me whether I would consider editing a book on Plant Organelles. I accepted this challenge, after months of deliberations, primarily because I was unsuccessful in finding a text book in this area for many years. I signed the contract with Kluwer in March 2003 with a promise to deliver a camera-ready textbook on July 1, 2004. Given the short deadline and the complexity of the task, I quickly realized this task would need a co-editor. Dr. Christine Chase was the first scientist who came to my mind because of her expertise in plant mitochondria, and she readily agreed to work with me on this book.
Publisher: Springer Science & Business Media
ISBN: 1402031661
Category : Science
Languages : en
Pages : 671
Book Description
We have taught plant molecular biology and biotechnology at the undergraduate and graduate level for over 20 years. In the past few decades, the field of plant organelle molecular biology and biotechnology has made immense strides. From the green revolution to golden rice, plant organelles have revolutionized agriculture. Given the exponential growth in research, the problem of finding appropriate textbooks for courses in plant biotechnology and molecular biology has become a major challenge. After years of handing out photocopies of various journal articles and reviews scattered through out the print and electronic media, a serendipitous meeting occurred at the 2002 IATPC World Congress held in Orlando, Florida. After my talk and evaluating several posters presented by investigators from my laboratory, Dr. Jacco Flipsen, Publishing Manager of Kluwer Publishers asked me whether I would consider editing a book on Plant Organelles. I accepted this challenge, after months of deliberations, primarily because I was unsuccessful in finding a text book in this area for many years. I signed the contract with Kluwer in March 2003 with a promise to deliver a camera-ready textbook on July 1, 2004. Given the short deadline and the complexity of the task, I quickly realized this task would need a co-editor. Dr. Christine Chase was the first scientist who came to my mind because of her expertise in plant mitochondria, and she readily agreed to work with me on this book.
Pollen Biotechnology for Crop Production and Improvement
Author: K. R. Shivanna
Publisher: Cambridge University Press
ISBN: 052147180X
Category : Science
Languages : en
Pages : 464
Book Description
Here, for the first time in a single volume, are all the ideas and techniques developed in the last two decades concerning the manipulation of pollen and pollen tubes in plant breeding and biotechnology.
Publisher: Cambridge University Press
ISBN: 052147180X
Category : Science
Languages : en
Pages : 464
Book Description
Here, for the first time in a single volume, are all the ideas and techniques developed in the last two decades concerning the manipulation of pollen and pollen tubes in plant breeding and biotechnology.
Biology of Brassica Coenospecies
Author: C. Gomez-Campo
Publisher: Elsevier
ISBN: 0080528023
Category : Technology & Engineering
Languages : en
Pages : 501
Book Description
Brassica crop species and their allies (Raphanus, Sinapis, Eruca, etc.) are important sources of edible roots, stems, leaves, buds and inflorescences, as well as of edible or industrial oils, condiments and forage. Many well known names of plants or plant products, such as kale, cabbage, brocolli, cauliflower, Brussels sprouts, kohl-rabi, Chinese cabbage, turnip, rape, rutabaga, swede, colza or rapeseed, canola, mustard, rocket, etc. are directly associated to this botanical group.The scientific interest for this botanical group has run parallel to its economical importance, and research achievements in our days would have certainly appeared unimaginable only two decades ago. As the end of the millenium approaches, entirely new fields (transformation, somatic fusion, etc.) have been added to the classical ones. Thus, nobody can doubt the opportuneness of this book, which combines and presents both the basic and applied biological aspects of the Brassica species.
Publisher: Elsevier
ISBN: 0080528023
Category : Technology & Engineering
Languages : en
Pages : 501
Book Description
Brassica crop species and their allies (Raphanus, Sinapis, Eruca, etc.) are important sources of edible roots, stems, leaves, buds and inflorescences, as well as of edible or industrial oils, condiments and forage. Many well known names of plants or plant products, such as kale, cabbage, brocolli, cauliflower, Brussels sprouts, kohl-rabi, Chinese cabbage, turnip, rape, rutabaga, swede, colza or rapeseed, canola, mustard, rocket, etc. are directly associated to this botanical group.The scientific interest for this botanical group has run parallel to its economical importance, and research achievements in our days would have certainly appeared unimaginable only two decades ago. As the end of the millenium approaches, entirely new fields (transformation, somatic fusion, etc.) have been added to the classical ones. Thus, nobody can doubt the opportuneness of this book, which combines and presents both the basic and applied biological aspects of the Brassica species.
The Maize Handbook
Author: Michael Freeling
Publisher: Springer Science & Business Media
ISBN: 1461226945
Category : Technology & Engineering
Languages : en
Pages : 776
Book Description
The Maize Handbook represents the collective efforts of the maize research community to enumerate the key steps of standard procedures and to disseminate these protocols for the common good. Although the material in this volume is drawn from experience with maize, many of the procedures, protocols, and descriptions are applicable to other higher plants, particularly to other grasses. The power and resolution of experiments with maize depend on the wide range of specialized genetic techniques and marked stocks; these materials are available today as the culmination of nearly 100 years of genetic research. A major goal of this volume is to introduce this genetical legacy and to highlight current stock construction programs that will soon benefit our work, e. g. high-density RFLP maps, deletion stocks, etc. Both stock construction and maintenance are relatively straightforward in maize as a result of the ease of crossing and the longevity of stored seeds. Crossing is facilitated by the separate staminate (tassel) and pistillate (ear) flowers, a feature almost unique to maize. On the other hand, many of the genetic methodologies utilized with maize, including the precision of record keeping, can be adapted to other plants. Facile communication and a spirit of co-operation have characterized the maize genetics community since its earliest days. Starting in the 1930s, institutions such as annual Maize Genetics Cooperation Newsletter, the Maize Genetics Stock Center, and the annual maize genetics meeting provide continuity to the field.
Publisher: Springer Science & Business Media
ISBN: 1461226945
Category : Technology & Engineering
Languages : en
Pages : 776
Book Description
The Maize Handbook represents the collective efforts of the maize research community to enumerate the key steps of standard procedures and to disseminate these protocols for the common good. Although the material in this volume is drawn from experience with maize, many of the procedures, protocols, and descriptions are applicable to other higher plants, particularly to other grasses. The power and resolution of experiments with maize depend on the wide range of specialized genetic techniques and marked stocks; these materials are available today as the culmination of nearly 100 years of genetic research. A major goal of this volume is to introduce this genetical legacy and to highlight current stock construction programs that will soon benefit our work, e. g. high-density RFLP maps, deletion stocks, etc. Both stock construction and maintenance are relatively straightforward in maize as a result of the ease of crossing and the longevity of stored seeds. Crossing is facilitated by the separate staminate (tassel) and pistillate (ear) flowers, a feature almost unique to maize. On the other hand, many of the genetic methodologies utilized with maize, including the precision of record keeping, can be adapted to other plants. Facile communication and a spirit of co-operation have characterized the maize genetics community since its earliest days. Starting in the 1930s, institutions such as annual Maize Genetics Cooperation Newsletter, the Maize Genetics Stock Center, and the annual maize genetics meeting provide continuity to the field.
Mitochondrial Genome Evolution
Author: Laurence Marechal-Drouard
Publisher: Academic Press
ISBN: 0123942799
Category : Science
Languages : en
Pages : 486
Book Description
Advances in Botanical Research publishes in-depth and up-to-date reviews on a wide range of topics in plant sciences. Features a wide range of reviews by recognized experts on all aspects of plant genetics, biochemistry, cell biology, molecular biology, physiology and ecology. This thematic volume features reviews on Mitochondrial genome evolution. Publishes in-depth and up-to-date reviews on a wide range of topics in plant sciences Features a wide range of reviews by recognized experts on all aspects of plant genetics, biochemistry, cell biology, molecular biology, physiology and ecology This thematic volume features reviews on mitochondrial genome evolution
Publisher: Academic Press
ISBN: 0123942799
Category : Science
Languages : en
Pages : 486
Book Description
Advances in Botanical Research publishes in-depth and up-to-date reviews on a wide range of topics in plant sciences. Features a wide range of reviews by recognized experts on all aspects of plant genetics, biochemistry, cell biology, molecular biology, physiology and ecology. This thematic volume features reviews on Mitochondrial genome evolution. Publishes in-depth and up-to-date reviews on a wide range of topics in plant sciences Features a wide range of reviews by recognized experts on all aspects of plant genetics, biochemistry, cell biology, molecular biology, physiology and ecology This thematic volume features reviews on mitochondrial genome evolution
Genetic Modification of Plants
Author: Frank Kempken
Publisher: Springer Science & Business Media
ISBN: 3642023916
Category : Science
Languages : en
Pages : 683
Book Description
Conceived with the aim of sorting fact from fiction over genetically modified (GM) crops, this book brings together the knowledge of 30 specialists in the field of transgenic plants. It covers the generation and detection of these plants as well as the genetic traits conferred on transgenic plants. In addition, the book looks at a wide variety of crops, ornamental plants and tree species that are subject to genetic modifications, assessing the risks involved in genetic modification as well as the potential economic benefits of the technology in specific cases. The book’s structure, with fully cross-referenced chapters, gives readers a quick access to specific topics, whether that is comprehensive data on particular species of ornamentals, or coverage of the socioeconomic implications of GM technology. With an increasing demand for bioenergy, and the necessary higher yields relying on wider genetic variation, this book supplies all the technical details required to move forward to a new era in agriculture.
Publisher: Springer Science & Business Media
ISBN: 3642023916
Category : Science
Languages : en
Pages : 683
Book Description
Conceived with the aim of sorting fact from fiction over genetically modified (GM) crops, this book brings together the knowledge of 30 specialists in the field of transgenic plants. It covers the generation and detection of these plants as well as the genetic traits conferred on transgenic plants. In addition, the book looks at a wide variety of crops, ornamental plants and tree species that are subject to genetic modifications, assessing the risks involved in genetic modification as well as the potential economic benefits of the technology in specific cases. The book’s structure, with fully cross-referenced chapters, gives readers a quick access to specific topics, whether that is comprehensive data on particular species of ornamentals, or coverage of the socioeconomic implications of GM technology. With an increasing demand for bioenergy, and the necessary higher yields relying on wider genetic variation, this book supplies all the technical details required to move forward to a new era in agriculture.
Synthetic Biology
Author: Madan L. Nagpal
Publisher: BoD – Books on Demand
ISBN: 1789840899
Category : Medical
Languages : en
Pages : 208
Book Description
Synthetic biology gives us a new hope because it combines various disciplines, such as genetics, chemistry, biology, molecular sciences, and other disciplines, and gives rise to a novel interdisciplinary science. We can foresee the creation of the new world of vegetation, animals, and humans with the interdisciplinary system of biological sciences. These articles are contributed by renowned experts in their fields. The field of synthetic biology is growing exponentially and opening up new avenues in multidisciplinary approaches by bringing together theoretical and applied aspects of science.
Publisher: BoD – Books on Demand
ISBN: 1789840899
Category : Medical
Languages : en
Pages : 208
Book Description
Synthetic biology gives us a new hope because it combines various disciplines, such as genetics, chemistry, biology, molecular sciences, and other disciplines, and gives rise to a novel interdisciplinary science. We can foresee the creation of the new world of vegetation, animals, and humans with the interdisciplinary system of biological sciences. These articles are contributed by renowned experts in their fields. The field of synthetic biology is growing exponentially and opening up new avenues in multidisciplinary approaches by bringing together theoretical and applied aspects of science.
Brassica Improvement
Author: Shabir Hussain Wani
Publisher: Springer Nature
ISBN: 3030346943
Category : Technology & Engineering
Languages : en
Pages : 261
Book Description
Global population is mounting at an alarming stride to surpass 9.3 billion by 2050, whereas simultaneously the agricultural productivity is gravely affected by climate changes resulting in increased biotic and abiotic stresses. The genus Brassica belongs to the mustard family whose members are known as cruciferous vegetables, cabbages or mustard plants. Rapeseed-mustard is world’s third most important source of edible oil after soybean and oil palm. It has worldwide acceptance owing to its rare combination of health promoting factors. It has very low levels of saturated fatty acids which make it the healthiest edible oil that is commonly available. Apart from this, it is rich in antioxidants by virtue of tocopherols and phytosterols presence in the oil. The high omega 3 content reduces the risk of atherosclerosis/heart attack. Conventional breeding methods have met with limited success in Brassica because yield and stress resilience are polygenic traits and are greatly influenced by environment. Therefore, it is imperative to accelerate the efforts to unravel the biochemical, physiological and molecular mechanisms underlying yield, quality and tolerance towards biotic and abiotic stresses in Brassica. To exploit its fullest potential, systematic efforts are needed to unlock the genetic information for new germplasms that tolerate initial and terminal state heat coupled with moisture stress. For instance, wild relatives may be exploited in developing introgressed and resynthesized lines with desirable attributes. Exploitation of heterosis is another important area which can be achieved by introducing transgenics to raise stable CMS lines. Doubled haploid breeding and marker assisted selection should be employed along with conventional breeding. Breeding programmes aim at enhancing resource use efficiency, especially nutrient and water as well as adoption to aberrant environmental changes should also be considered. Biotechnological interventions are essential for altering the biosynthetic pathways for developing high oleic and low linolenic lines. Accordingly, tools such as microspore and ovule culture, embryo rescue, isolation of trait specific genes especially for aphid, Sclerotinia and alternaria blight resistance, etc. along with identification of potential lines based on genetic diversity can assist ongoing breeding programmes. In this book, we highlight the recent molecular, genetic and genomic interventions made to achieve crop improvement in terms of yield increase, quality and stress tolerance in Brassica, with a special emphasis in Rapeseed-mustard.
Publisher: Springer Nature
ISBN: 3030346943
Category : Technology & Engineering
Languages : en
Pages : 261
Book Description
Global population is mounting at an alarming stride to surpass 9.3 billion by 2050, whereas simultaneously the agricultural productivity is gravely affected by climate changes resulting in increased biotic and abiotic stresses. The genus Brassica belongs to the mustard family whose members are known as cruciferous vegetables, cabbages or mustard plants. Rapeseed-mustard is world’s third most important source of edible oil after soybean and oil palm. It has worldwide acceptance owing to its rare combination of health promoting factors. It has very low levels of saturated fatty acids which make it the healthiest edible oil that is commonly available. Apart from this, it is rich in antioxidants by virtue of tocopherols and phytosterols presence in the oil. The high omega 3 content reduces the risk of atherosclerosis/heart attack. Conventional breeding methods have met with limited success in Brassica because yield and stress resilience are polygenic traits and are greatly influenced by environment. Therefore, it is imperative to accelerate the efforts to unravel the biochemical, physiological and molecular mechanisms underlying yield, quality and tolerance towards biotic and abiotic stresses in Brassica. To exploit its fullest potential, systematic efforts are needed to unlock the genetic information for new germplasms that tolerate initial and terminal state heat coupled with moisture stress. For instance, wild relatives may be exploited in developing introgressed and resynthesized lines with desirable attributes. Exploitation of heterosis is another important area which can be achieved by introducing transgenics to raise stable CMS lines. Doubled haploid breeding and marker assisted selection should be employed along with conventional breeding. Breeding programmes aim at enhancing resource use efficiency, especially nutrient and water as well as adoption to aberrant environmental changes should also be considered. Biotechnological interventions are essential for altering the biosynthetic pathways for developing high oleic and low linolenic lines. Accordingly, tools such as microspore and ovule culture, embryo rescue, isolation of trait specific genes especially for aphid, Sclerotinia and alternaria blight resistance, etc. along with identification of potential lines based on genetic diversity can assist ongoing breeding programmes. In this book, we highlight the recent molecular, genetic and genomic interventions made to achieve crop improvement in terms of yield increase, quality and stress tolerance in Brassica, with a special emphasis in Rapeseed-mustard.
Two-line Hybrid Rice Breeding Manual
Author: Sant S. Virmani
Publisher: Int. Rice Res. Inst.
ISBN: 9712201856
Category : Hybrid rice
Languages : en
Pages : 88
Book Description
Publisher: Int. Rice Res. Inst.
ISBN: 9712201856
Category : Hybrid rice
Languages : en
Pages : 88
Book Description