Author: F. Bauer
Publisher: Springer Science & Business Media
ISBN: 1461252407
Category : Science
Languages : en
Pages : 203
Book Description
In this book, we describe in detail a numerical method to study the equilibrium and stability of a plasma confined by a strong magnetic field in toroidal geometry without two-dimensional symmetry. The principal appli cation is to stellarators, which are currently of interest in thermonuclear fusion research. Our mathematical model is based on the partial differential equations of ideal magnetohydrodynamics. The main contribution is a computer code named BETA that is listed in the final chapter. This work is the natural continuation of an investigation that was presented in an early volume of the Springer Series in Computational Physics (cf. [3]). It has been supported over a period of years by the U.S. Department of Energy under Contract DE-AC02-76ER03077 with New York University. We would like to express our gratitude to Dr. Franz Herrnegger for the assistance he has given us with the preparation of the manuscript. We are especially indebted to Connie Engle for the high quality of the final typescript. New York F. BAUER October 1983 O. BETANCOURT P. GARABEDIAN Contents 1. Introduction 1 2. Synopsis of the Method 3 1. Variational principle 3 2. Coordinate system 6 3. Finite Difference Scheme 8 1. Difference equations ....................... " 8 2. Island structure ............................. 10 3. Accelerated iteration procedure .............. . . .. 12 Nonlinear Stability 15 4. 1. Second minimization . . . . . . . . . . . . . . . . .. . . 15 . . . . . 2. Test functions and convergence studies . . . . . . . .. . . 17 . 3. Comparison with exact solutions ................. 19 5. The Mercier Criterion 22 1. Local mode analysis . . . . . . . . . . . . . . . . .. . . 22 . . . . . 2. Computational method . . . . . . . . . . . . . . . .. . . 23 . . . .
Magnetohydrodynamic Equilibrium and Stability of Stellarators
Author: F. Bauer
Publisher: Springer Science & Business Media
ISBN: 1461252407
Category : Science
Languages : en
Pages : 203
Book Description
In this book, we describe in detail a numerical method to study the equilibrium and stability of a plasma confined by a strong magnetic field in toroidal geometry without two-dimensional symmetry. The principal appli cation is to stellarators, which are currently of interest in thermonuclear fusion research. Our mathematical model is based on the partial differential equations of ideal magnetohydrodynamics. The main contribution is a computer code named BETA that is listed in the final chapter. This work is the natural continuation of an investigation that was presented in an early volume of the Springer Series in Computational Physics (cf. [3]). It has been supported over a period of years by the U.S. Department of Energy under Contract DE-AC02-76ER03077 with New York University. We would like to express our gratitude to Dr. Franz Herrnegger for the assistance he has given us with the preparation of the manuscript. We are especially indebted to Connie Engle for the high quality of the final typescript. New York F. BAUER October 1983 O. BETANCOURT P. GARABEDIAN Contents 1. Introduction 1 2. Synopsis of the Method 3 1. Variational principle 3 2. Coordinate system 6 3. Finite Difference Scheme 8 1. Difference equations ....................... " 8 2. Island structure ............................. 10 3. Accelerated iteration procedure .............. . . .. 12 Nonlinear Stability 15 4. 1. Second minimization . . . . . . . . . . . . . . . . .. . . 15 . . . . . 2. Test functions and convergence studies . . . . . . . .. . . 17 . 3. Comparison with exact solutions ................. 19 5. The Mercier Criterion 22 1. Local mode analysis . . . . . . . . . . . . . . . . .. . . 22 . . . . . 2. Computational method . . . . . . . . . . . . . . . .. . . 23 . . . .
Publisher: Springer Science & Business Media
ISBN: 1461252407
Category : Science
Languages : en
Pages : 203
Book Description
In this book, we describe in detail a numerical method to study the equilibrium and stability of a plasma confined by a strong magnetic field in toroidal geometry without two-dimensional symmetry. The principal appli cation is to stellarators, which are currently of interest in thermonuclear fusion research. Our mathematical model is based on the partial differential equations of ideal magnetohydrodynamics. The main contribution is a computer code named BETA that is listed in the final chapter. This work is the natural continuation of an investigation that was presented in an early volume of the Springer Series in Computational Physics (cf. [3]). It has been supported over a period of years by the U.S. Department of Energy under Contract DE-AC02-76ER03077 with New York University. We would like to express our gratitude to Dr. Franz Herrnegger for the assistance he has given us with the preparation of the manuscript. We are especially indebted to Connie Engle for the high quality of the final typescript. New York F. BAUER October 1983 O. BETANCOURT P. GARABEDIAN Contents 1. Introduction 1 2. Synopsis of the Method 3 1. Variational principle 3 2. Coordinate system 6 3. Finite Difference Scheme 8 1. Difference equations ....................... " 8 2. Island structure ............................. 10 3. Accelerated iteration procedure .............. . . .. 12 Nonlinear Stability 15 4. 1. Second minimization . . . . . . . . . . . . . . . . .. . . 15 . . . . . 2. Test functions and convergence studies . . . . . . . .. . . 17 . 3. Comparison with exact solutions ................. 19 5. The Mercier Criterion 22 1. Local mode analysis . . . . . . . . . . . . . . . . .. . . 22 . . . . . 2. Computational method . . . . . . . . . . . . . . . .. . . 23 . . . .
Magnetohydrodynamic Equilibrium and Stability of Stellarators
Author: Felix Bauer
Publisher: Springer
ISBN: 9781461252412
Category : Science
Languages : en
Pages : 196
Book Description
In this book, we describe in detail a numerical method to study the equilibrium and stability of a plasma confined by a strong magnetic field in toroidal geometry without two-dimensional symmetry. The principal appli cation is to stellarators, which are currently of interest in thermonuclear fusion research. Our mathematical model is based on the partial differential equations of ideal magnetohydrodynamics. The main contribution is a computer code named BETA that is listed in the final chapter. This work is the natural continuation of an investigation that was presented in an early volume of the Springer Series in Computational Physics (cf. [3]). It has been supported over a period of years by the U.S. Department of Energy under Contract DE-AC02-76ER03077 with New York University. We would like to express our gratitude to Dr. Franz Herrnegger for the assistance he has given us with the preparation of the manuscript. We are especially indebted to Connie Engle for the high quality of the final typescript. New York F. BAUER October 1983 O. BETANCOURT P. GARABEDIAN Contents 1. Introduction 1 2. Synopsis of the Method 3 1. Variational principle 3 2. Coordinate system 6 3. Finite Difference Scheme 8 1. Difference equations ....................... " 8 2. Island structure ............................. 10 3. Accelerated iteration procedure .............. . . .. 12 Nonlinear Stability 15 4. 1. Second minimization . . . . . . . . . . . . . . . . .. . . 15 . . . . . 2. Test functions and convergence studies . . . . . . . .. . . 17 . 3. Comparison with exact solutions ................. 19 5. The Mercier Criterion 22 1. Local mode analysis . . . . . . . . . . . . . . . . .. . . 22 . . . . . 2. Computational method . . . . . . . . . . . . . . . .. . . 23 . . . .
Publisher: Springer
ISBN: 9781461252412
Category : Science
Languages : en
Pages : 196
Book Description
In this book, we describe in detail a numerical method to study the equilibrium and stability of a plasma confined by a strong magnetic field in toroidal geometry without two-dimensional symmetry. The principal appli cation is to stellarators, which are currently of interest in thermonuclear fusion research. Our mathematical model is based on the partial differential equations of ideal magnetohydrodynamics. The main contribution is a computer code named BETA that is listed in the final chapter. This work is the natural continuation of an investigation that was presented in an early volume of the Springer Series in Computational Physics (cf. [3]). It has been supported over a period of years by the U.S. Department of Energy under Contract DE-AC02-76ER03077 with New York University. We would like to express our gratitude to Dr. Franz Herrnegger for the assistance he has given us with the preparation of the manuscript. We are especially indebted to Connie Engle for the high quality of the final typescript. New York F. BAUER October 1983 O. BETANCOURT P. GARABEDIAN Contents 1. Introduction 1 2. Synopsis of the Method 3 1. Variational principle 3 2. Coordinate system 6 3. Finite Difference Scheme 8 1. Difference equations ....................... " 8 2. Island structure ............................. 10 3. Accelerated iteration procedure .............. . . .. 12 Nonlinear Stability 15 4. 1. Second minimization . . . . . . . . . . . . . . . . .. . . 15 . . . . . 2. Test functions and convergence studies . . . . . . . .. . . 17 . 3. Comparison with exact solutions ................. 19 5. The Mercier Criterion 22 1. Local mode analysis . . . . . . . . . . . . . . . . .. . . 22 . . . . . 2. Computational method . . . . . . . . . . . . . . . .. . . 23 . . . .
Magnetohydrodynamic Equilibrium and Stability of Stellarators
Author: Frances Bauer
Publisher:
ISBN: 9783540909668
Category : Plasma (Gaz ionisés) - Confinement - Informatique
Languages : en
Pages : 196
Book Description
Publisher:
ISBN: 9783540909668
Category : Plasma (Gaz ionisés) - Confinement - Informatique
Languages : en
Pages : 196
Book Description
Magnetohydrodynamic Stability of Tokamaks
Author: Hartmut Zohm
Publisher: John Wiley & Sons
ISBN: 3527412328
Category : Science
Languages : en
Pages : 254
Book Description
This book bridges the gap between general plasma physics lectures and the real world problems in MHD stability. In order to support the understanding of concepts and their implication, it refers to real world problems such as toroidal mode coupling or nonlinear evolution in a conceptual and phenomenological approach. Detailed mathematical treatment will involve classical linear stability analysis and an outline of more recent concepts such as the ballooning formalism. The book is based on lectures that the author has given to Master and PhD students in Fusion Plasma Physics. Due its strong link to experimental results in MHD instabilities, the book is also of use to senior researchers in the field, i.e. experimental physicists and engineers in fusion reactor science. The volume is organized in three parts. It starts with an introduction to the MHD equations, a section on toroidal equilibrium (tokamak and stellarator), and on linear stability analysis. Starting from there, the ideal MHD stability of the tokamak configuration will be treated in the second part which is subdivided into current driven and pressure driven MHD. This includes many examples with reference to experimental results for important MHD instabilities such as kinks and their transformation to RWMs, infernal modes, peeling modes, ballooning modes and their relation to ELMs. Finally the coverage is completed by a chapter on resistive stability explaining reconnection and island formation. Again, examples from recent tokamak MHD such as sawteeth, CTMs, NTMs and their relation to disruptions are extensively discussed.
Publisher: John Wiley & Sons
ISBN: 3527412328
Category : Science
Languages : en
Pages : 254
Book Description
This book bridges the gap between general plasma physics lectures and the real world problems in MHD stability. In order to support the understanding of concepts and their implication, it refers to real world problems such as toroidal mode coupling or nonlinear evolution in a conceptual and phenomenological approach. Detailed mathematical treatment will involve classical linear stability analysis and an outline of more recent concepts such as the ballooning formalism. The book is based on lectures that the author has given to Master and PhD students in Fusion Plasma Physics. Due its strong link to experimental results in MHD instabilities, the book is also of use to senior researchers in the field, i.e. experimental physicists and engineers in fusion reactor science. The volume is organized in three parts. It starts with an introduction to the MHD equations, a section on toroidal equilibrium (tokamak and stellarator), and on linear stability analysis. Starting from there, the ideal MHD stability of the tokamak configuration will be treated in the second part which is subdivided into current driven and pressure driven MHD. This includes many examples with reference to experimental results for important MHD instabilities such as kinks and their transformation to RWMs, infernal modes, peeling modes, ballooning modes and their relation to ELMs. Finally the coverage is completed by a chapter on resistive stability explaining reconnection and island formation. Again, examples from recent tokamak MHD such as sawteeth, CTMs, NTMs and their relation to disruptions are extensively discussed.
Stellarator and Heliotron Devices
Author: Masahiro Wakatani
Publisher: Oxford University Press, USA
ISBN: 9780195078312
Category : Language Arts & Disciplines
Languages : ko
Pages : 462
Book Description
This monograph describes plasma physics for magnetic confinement of high temperature plasmas in nonaxisymmetric toroidal magnetic fields or stellarators. The techniques are aimed at controlling nuclear fusion for continuous energy production. While the focus is on the nonaxisymmetric toroidal field, or heliotron, developed at Kyoto University, the physics applies equally to other stellarators and axisymmetric tokamaks. The author covers all aspects of magnetic confinement, formation of magnetic surfaces, magnetohydrodynamic equilibrium and stability, single charged particle confinement, neoclassical transport and plasma heating. He also reviews recent experiments and the prospects for the next generation of devices.
Publisher: Oxford University Press, USA
ISBN: 9780195078312
Category : Language Arts & Disciplines
Languages : ko
Pages : 462
Book Description
This monograph describes plasma physics for magnetic confinement of high temperature plasmas in nonaxisymmetric toroidal magnetic fields or stellarators. The techniques are aimed at controlling nuclear fusion for continuous energy production. While the focus is on the nonaxisymmetric toroidal field, or heliotron, developed at Kyoto University, the physics applies equally to other stellarators and axisymmetric tokamaks. The author covers all aspects of magnetic confinement, formation of magnetic surfaces, magnetohydrodynamic equilibrium and stability, single charged particle confinement, neoclassical transport and plasma heating. He also reviews recent experiments and the prospects for the next generation of devices.
Ideal MHD
Author: Jeffrey P. Freidberg
Publisher: Cambridge University Press
ISBN: 1107006252
Category : Science
Languages : en
Pages : 743
Book Description
Comprehensive, self-contained, and clearly written, this book describes the macroscopic equilibrium and stability of high temperature plasmas.
Publisher: Cambridge University Press
ISBN: 1107006252
Category : Science
Languages : en
Pages : 743
Book Description
Comprehensive, self-contained, and clearly written, this book describes the macroscopic equilibrium and stability of high temperature plasmas.
Ideal Magnetohydrodynamics
Author: Jeffrey P. Freidberg
Publisher: Springer
ISBN: 9781475708387
Category : Technology & Engineering
Languages : en
Pages : 489
Book Description
Publisher: Springer
ISBN: 9781475708387
Category : Technology & Engineering
Languages : en
Pages : 489
Book Description
Magnetohydrodynamics and Spectral Theory
Author: Alexander E. Lifshits
Publisher: Springer Science & Business Media
ISBN: 9400925611
Category : Science
Languages : en
Pages : 458
Book Description
2 The linearized ideal MHO equations. . . . . . . . . . . . 204 3 Spectral problems corresponding to evolutionary problems . . 211 4 Stability of equilibrium configurations and the Energy Principle 215 5 Alternative forms of the plasma potential energy 220 6 Minimization of the potential energy with respect to a parallel displacement . . . . . . . . . . . . . 222 7 Classification of ideal MHO instabilities . 224 8 The linearized non-ideal MHO equations . 226 Chapter 6. Homogeneous and discretely structured plasma oscillations 229 I Introduction . . . . . . . . . . . . . . . 229 2 Alfven waves in an incompressible ideal plasma 230 3 Cold ideal plasma oscillations. . . . 233 4 Compressible hot plasma oscillations 236 5 Finite resistivity effects . . . . . . . 239 6 Propagation of waves generated by a local source 240 7 Stratified plasma oscillations . . . . . . . . . 247 8 Oscillations of a plasma slab . . . . . . . . . 254 9 Instabilities of an ideal stratified gravitating plasma 256 10 Instabilities of a resistive stratified gravitating plasma. 262 Chapter 7. MHO oscillations of a gravitating plasma slab 265 I Introduction . . . . . . . . . . . . . . . 265 2 Gravitating slab equilibrium . . . . . . . . 266 3 Oscillations of a hot compressible plasma slab 267 4 Investigation of the slab stability via the Energy Principle 270 5 On the discrete spectrum of the operator Kk . . . . . . 274 6 On the essential spectrum of the operator Kk . . . . . . 279 7 On the discrete spectrum embedded in the essential spectrum 282 8 The eigenfunction expansion formula . . . . . . . . . . 285 9 Excitation of plasma oscillations by an external power source . 288 10 The linearized equations governing resistive gravitating plasma slab oscillations . . . . . . . . . . . . . . . . . . . . . 290 II Heuristic investigation of resistive instabilities. . . . . . . . . .
Publisher: Springer Science & Business Media
ISBN: 9400925611
Category : Science
Languages : en
Pages : 458
Book Description
2 The linearized ideal MHO equations. . . . . . . . . . . . 204 3 Spectral problems corresponding to evolutionary problems . . 211 4 Stability of equilibrium configurations and the Energy Principle 215 5 Alternative forms of the plasma potential energy 220 6 Minimization of the potential energy with respect to a parallel displacement . . . . . . . . . . . . . 222 7 Classification of ideal MHO instabilities . 224 8 The linearized non-ideal MHO equations . 226 Chapter 6. Homogeneous and discretely structured plasma oscillations 229 I Introduction . . . . . . . . . . . . . . . 229 2 Alfven waves in an incompressible ideal plasma 230 3 Cold ideal plasma oscillations. . . . 233 4 Compressible hot plasma oscillations 236 5 Finite resistivity effects . . . . . . . 239 6 Propagation of waves generated by a local source 240 7 Stratified plasma oscillations . . . . . . . . . 247 8 Oscillations of a plasma slab . . . . . . . . . 254 9 Instabilities of an ideal stratified gravitating plasma 256 10 Instabilities of a resistive stratified gravitating plasma. 262 Chapter 7. MHO oscillations of a gravitating plasma slab 265 I Introduction . . . . . . . . . . . . . . . 265 2 Gravitating slab equilibrium . . . . . . . . 266 3 Oscillations of a hot compressible plasma slab 267 4 Investigation of the slab stability via the Energy Principle 270 5 On the discrete spectrum of the operator Kk . . . . . . 274 6 On the essential spectrum of the operator Kk . . . . . . 279 7 On the discrete spectrum embedded in the essential spectrum 282 8 The eigenfunction expansion formula . . . . . . . . . . 285 9 Excitation of plasma oscillations by an external power source . 288 10 The linearized equations governing resistive gravitating plasma slab oscillations . . . . . . . . . . . . . . . . . . . . . 290 II Heuristic investigation of resistive instabilities. . . . . . . . . .
The Beta Equilibrium, Stability, and Transport Codes
Author: Frances Bauer
Publisher: Elsevier
ISBN: 032316031X
Category : Science
Languages : en
Pages : 201
Book Description
The Beta Equilibrium, Stability, and Transport Codes: Application to the Design of Stellarators covers the application of the BETA computer codes to the Heliotron E plasma confinement experiment. This book is the outgrowth of a collaboration between the Courant Institute at New York University and the Plasma Physics Laboratory at Kyoto University. After briefly dealing with the history of the codes and the design of new stellarator experiments, this five-chapter book goes on presenting 15 typical runs of the BETA equilibrium, stability, and transport codes. Included with each run is a statement relating the physics of the example to the computational model. The following chapters focus on the revisions of the BETA equilibrium code by implementing a simplified neoclassical transport theory defining the geometric confinement time output by the equilibrium code. The concluding chapter provides a FORTRAN listing of the transport code.
Publisher: Elsevier
ISBN: 032316031X
Category : Science
Languages : en
Pages : 201
Book Description
The Beta Equilibrium, Stability, and Transport Codes: Application to the Design of Stellarators covers the application of the BETA computer codes to the Heliotron E plasma confinement experiment. This book is the outgrowth of a collaboration between the Courant Institute at New York University and the Plasma Physics Laboratory at Kyoto University. After briefly dealing with the history of the codes and the design of new stellarator experiments, this five-chapter book goes on presenting 15 typical runs of the BETA equilibrium, stability, and transport codes. Included with each run is a statement relating the physics of the example to the computational model. The following chapters focus on the revisions of the BETA equilibrium code by implementing a simplified neoclassical transport theory defining the geometric confinement time output by the equilibrium code. The concluding chapter provides a FORTRAN listing of the transport code.
Energy Research Abstracts
Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 782
Book Description
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 782
Book Description