Macroscopic Implications from Phase Space Dynamics of Tokamak Turbulence

Macroscopic Implications from Phase Space Dynamics of Tokamak Turbulence PDF Author: Yusuke Kosuga
Publisher:
ISBN: 9781267401243
Category :
Languages : en
Pages : 134

Get Book Here

Book Description
Aspects of the macroscopic phenomenology of tokamak plasmas - relaxation, transport, and flow generation - are analyzed in the context of phase space dynamics. Particular problems of interest are: i) fluctuation entropy evolution with turbulence driven flows and its application to flow generation by heat flux driven turbulence, and ii) dynamical coupling between phase space structures and zonal flows and its implication for macroscopic relaxation and transport. In chapter 2, intrinsic toroidal rotation drive by heat flux driven turbulence in tokamak is analyzed based on phase space dynamics. In particular, the dynamics of fluctuation entropy with turbulence driven flows is formulated. The entropy budget is utilized to quantify tokamaks as a heat engine system, where heat flux is converted to macroscopic flows. Efficiency of the flow generation process is defined as the ratio of entropy destruction via flow generation to entropy production via heat input. Comparison of the results to experimental scaling is discussed as well. In chapter 3, dynamics of a single phase space structure (drift hole) is discussed for a strongly magnetized 3D plasma. The drift hole is shown to be dynamically coupled to zonal flows by polarization charge scattering. The coupled dynamics of the drift hole and zonal flow is formulated based on momentum budget. As an application, a bound on the self-bound drift hole potential amplitude is derived. The results show that zonal flow damping appears as a controlling parameter. In chapter 4, dynamics of both a single structure and multi-structures in phase space are discussed for a relevant system, i.e. trapped ion driven ion temperature gradient turbulence. The structures are dynamically coupled to zonal flows, since they must scatter polarization charge to satisfy the quasi-neutrality. The coupled evolution of the structures and flows is formulated as a momentum theorem. An implication for transport process is discussed as well. The transport flux is prescribed by dynamical friction exerted by structures on flows. The dynamical friction exerted by zonal flow is a novel effect and reduces transport by algebraically competing against other fluxes, such as a quasilinear diffusive flux.

Macroscopic Implications from Phase Space Dynamics of Tokamak Turbulence

Macroscopic Implications from Phase Space Dynamics of Tokamak Turbulence PDF Author: Yusuke Kosuga
Publisher:
ISBN: 9781267401243
Category :
Languages : en
Pages : 134

Get Book Here

Book Description
Aspects of the macroscopic phenomenology of tokamak plasmas - relaxation, transport, and flow generation - are analyzed in the context of phase space dynamics. Particular problems of interest are: i) fluctuation entropy evolution with turbulence driven flows and its application to flow generation by heat flux driven turbulence, and ii) dynamical coupling between phase space structures and zonal flows and its implication for macroscopic relaxation and transport. In chapter 2, intrinsic toroidal rotation drive by heat flux driven turbulence in tokamak is analyzed based on phase space dynamics. In particular, the dynamics of fluctuation entropy with turbulence driven flows is formulated. The entropy budget is utilized to quantify tokamaks as a heat engine system, where heat flux is converted to macroscopic flows. Efficiency of the flow generation process is defined as the ratio of entropy destruction via flow generation to entropy production via heat input. Comparison of the results to experimental scaling is discussed as well. In chapter 3, dynamics of a single phase space structure (drift hole) is discussed for a strongly magnetized 3D plasma. The drift hole is shown to be dynamically coupled to zonal flows by polarization charge scattering. The coupled dynamics of the drift hole and zonal flow is formulated based on momentum budget. As an application, a bound on the self-bound drift hole potential amplitude is derived. The results show that zonal flow damping appears as a controlling parameter. In chapter 4, dynamics of both a single structure and multi-structures in phase space are discussed for a relevant system, i.e. trapped ion driven ion temperature gradient turbulence. The structures are dynamically coupled to zonal flows, since they must scatter polarization charge to satisfy the quasi-neutrality. The coupled evolution of the structures and flows is formulated as a momentum theorem. An implication for transport process is discussed as well. The transport flux is prescribed by dynamical friction exerted by structures on flows. The dynamical friction exerted by zonal flow is a novel effect and reduces transport by algebraically competing against other fluxes, such as a quasilinear diffusive flux.

Transport Processes in Phase Space Driven by Trapped Particle Turbulence in Tokamak Plasmas

Transport Processes in Phase Space Driven by Trapped Particle Turbulence in Tokamak Plasmas PDF Author: Julien Medina
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
One of the most promising approach to controlled nuclear fusion is the tokamak. It is a toroidal machine confining a fusion plasma using magnetic fields. Transport of particles and heat, from the core toward the edges happens spontaneously, degrades the efficiency of the tokamak, and is driven by turbulence. We use a bounce-averaged 4D gyrokinetic code which solves the Vlasov-Quasi-neutrality system. The code is based on a reduced model which averages out the cyclotron and the bounce motion of the trapped particles to reduce the dimensionality. In this work we developed and tested a new module for the code, allowing to track test particle trajectories in phase space. As a first result obtained with test particles, we achieved to separate the diffusive contribution to the radial particle flux in energy space, from the non-diffusive contributions. Both fluxes present an intense peak indicating resonant particles dominate transport. On short period of time the test particles undergo a small scale advection, but on longer times, they follow a random walk process. We then explored with greater accuracy the fluxes in energy space. Furthermore we compared the obtained fluxes with quasi-linear predictions and found a qualitative agreement, although there was a ~50% discrepancy in the peak magnitude.

Phase-space Dynamics of Runaway Electrons In Tokamaks

Phase-space Dynamics of Runaway Electrons In Tokamaks PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 201

Get Book Here

Book Description
The phase-space dynamics of runaway electrons is studied, including the influence of loop voltage, radiation damping, and collisions. A theoretical model and a numerical algorithm for the runaway dynamics in phase space are developed. Instead of standard integrators, such as the Runge-Kutta method, a variational symplectic integrator is applied to simulate the long-term dynamics of a runaway electron. The variational symplectic integrator is able to globally bound the numerical error for arbitrary number of time-steps, and thus accurately track the runaway trajectory in phase space. Simulation results show that the circulating orbits of runaway electrons drift outward toward the wall, which is consistent with experimental observations. The physics of the outward drift is analyzed. It is found that the outward drift is caused by the imbalance between the increase of mechanical angular momentum and the input of toroidal angular momentum due to the parallel acceleration. An analytical expression of the outward drift velocity is derived. The knowledge of trajectory of runaway electrons in configuration space sheds light on how the electrons hit the first wall, and thus provides clues for possible remedies.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 652

Get Book Here

Book Description
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.

Fusion Energy Update

Fusion Energy Update PDF Author:
Publisher:
ISBN:
Category : Controlled fusion
Languages : en
Pages : 310

Get Book Here

Book Description


Contemporary Science and Technology of Plasma, Plasma '96

Contemporary Science and Technology of Plasma, Plasma '96 PDF Author:
Publisher: Allied Publishers
ISBN: 9788170237112
Category : Laser plasma
Languages : en
Pages : 500

Get Book Here

Book Description


Energy Research Abstracts

Energy Research Abstracts PDF Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 582

Get Book Here

Book Description


Turbulent Transport In Magnetized Plasmas (Second Edition)

Turbulent Transport In Magnetized Plasmas (Second Edition) PDF Author: C Wendell Horton, Jr
Publisher: #N/A
ISBN: 9813225904
Category : Science
Languages : en
Pages : 522

Get Book Here

Book Description
For a few seconds with large machines, scientists and engineers have now created the fusion power of the stars in the laboratory and at the same time find the rich range of complex turbulent electromagnetic waves that transport the plasma confinement systems. The turbulent transport mechanisms created in the laboratory are explained in detail in the second edition of 'Turbulent Transport in Magnetized Plasmas' by Professor Horton.The principles and properties of the major plasma confinement machines are explored with basic physics to the extent currently understood. For the observational laws that are not understood — the empirical confinement laws — offering challenges to the next generation of plasma students and researchers — are explained in detail. An example, is the confinement regime — called the 'I-mode' — currently a hot topic — is explored.Numerous important problems and puzzles for the next generation of plasma scientists are explained. There is growing demand for new simulation codes utilizing the massively parallel computers with MPI and GPU methods. When the 20 billion dollar ITER machine is tested in the 2020ies, new theories and faster/smarter computer simulations running in near real-time control systems will be used to control the burning hydrogen plasmas.

Modern Plasma Physics: Volume 1, Physical Kinetics of Turbulent Plasmas

Modern Plasma Physics: Volume 1, Physical Kinetics of Turbulent Plasmas PDF Author: Patrick H. Diamond
Publisher: Cambridge University Press
ISBN: 9781107424562
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
This three-volume series presents the ideas, models and approaches essential to understanding plasma dynamics and self-organization for researchers and graduate students in plasma physics, controlled fusion and related fields such as plasma astrophysics. Volume I develops the physical kinetics of plasma turbulence through a focus on quasi-particle models and dynamics. It discusses the essential physics concepts and theoretical methods for describing weak and strong fluid and phase space turbulence in plasma systems far from equilibrium. The book connects the traditionally 'plasma' topic of weak or wave turbulence theory to more familiar fluid turbulence theory, and extends both to the realm of collisionless phase space turbulence. This gives readers a deeper understanding of these related fields, and builds a foundation for future applications to multi-scale processes of self-organization in tokamaks and other confined plasmas. This book emphasizes the conceptual foundations and physical intuition underpinnings of plasma turbulence theory.

Physics Briefs

Physics Briefs PDF Author:
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 1212

Get Book Here

Book Description