Machine Translation and Transliteration involving Related, Low-resource Languages

Machine Translation and Transliteration involving Related, Low-resource Languages PDF Author: Anoop Kunchukuttan
Publisher: CRC Press
ISBN: 100042166X
Category : Computers
Languages : en
Pages : 220

Get Book Here

Book Description
Machine Translation and Transliteration involving Related, Low-resource Languages discusses an important aspect of natural language processing that has received lesser attention: translation and transliteration involving related languages in a low-resource setting. This is a very relevant real-world scenario for people living in neighbouring states/provinces/countries who speak similar languages and need to communicate with each other, but training data to build supporting MT systems is limited. The book discusses different characteristics of related languages with rich examples and draws connections between two problems: translation for related languages and transliteration. It shows how linguistic similarities can be utilized to learn MT systems for related languages with limited data. It comprehensively discusses the use of subword-level models and multilinguality to utilize these linguistic similarities. The second part of the book explores methods for machine transliteration involving related languages based on multilingual and unsupervised approaches. Through extensive experiments over a wide variety of languages, the efficacy of these methods is established. Features Novel methods for machine translation and transliteration between related languages, supported with experiments on a wide variety of languages. An overview of past literature on machine translation for related languages. A case study about machine translation for related languages between 10 major languages from India, which is one of the most linguistically diverse country in the world. The book presents important concepts and methods for machine translation involving related languages. In general, it serves as a good reference to NLP for related languages. It is intended for students, researchers and professionals interested in Machine Translation, Translation Studies, Multilingual Computing Machine and Natural Language Processing. It can be used as reference reading for courses in NLP and machine translation. Anoop Kunchukuttan is a Senior Applied Researcher at Microsoft India. His research spans various areas on multilingual and low-resource NLP. Pushpak Bhattacharyya is a Professor at the Department of Computer Science, IIT Bombay. His research areas are Natural Language Processing, Machine Learning and AI (NLP-ML-AI). Prof. Bhattacharyya has published more than 350 research papers in various areas of NLP.

Machine Translation and Transliteration involving Related, Low-resource Languages

Machine Translation and Transliteration involving Related, Low-resource Languages PDF Author: Anoop Kunchukuttan
Publisher: CRC Press
ISBN: 100042166X
Category : Computers
Languages : en
Pages : 220

Get Book Here

Book Description
Machine Translation and Transliteration involving Related, Low-resource Languages discusses an important aspect of natural language processing that has received lesser attention: translation and transliteration involving related languages in a low-resource setting. This is a very relevant real-world scenario for people living in neighbouring states/provinces/countries who speak similar languages and need to communicate with each other, but training data to build supporting MT systems is limited. The book discusses different characteristics of related languages with rich examples and draws connections between two problems: translation for related languages and transliteration. It shows how linguistic similarities can be utilized to learn MT systems for related languages with limited data. It comprehensively discusses the use of subword-level models and multilinguality to utilize these linguistic similarities. The second part of the book explores methods for machine transliteration involving related languages based on multilingual and unsupervised approaches. Through extensive experiments over a wide variety of languages, the efficacy of these methods is established. Features Novel methods for machine translation and transliteration between related languages, supported with experiments on a wide variety of languages. An overview of past literature on machine translation for related languages. A case study about machine translation for related languages between 10 major languages from India, which is one of the most linguistically diverse country in the world. The book presents important concepts and methods for machine translation involving related languages. In general, it serves as a good reference to NLP for related languages. It is intended for students, researchers and professionals interested in Machine Translation, Translation Studies, Multilingual Computing Machine and Natural Language Processing. It can be used as reference reading for courses in NLP and machine translation. Anoop Kunchukuttan is a Senior Applied Researcher at Microsoft India. His research spans various areas on multilingual and low-resource NLP. Pushpak Bhattacharyya is a Professor at the Department of Computer Science, IIT Bombay. His research areas are Natural Language Processing, Machine Learning and AI (NLP-ML-AI). Prof. Bhattacharyya has published more than 350 research papers in various areas of NLP.

Machine Translation and Transliteration Involving Related and Low-resource Languages

Machine Translation and Transliteration Involving Related and Low-resource Languages PDF Author: Anoop Kunchukuttan
Publisher: Chapman & Hall/CRC
ISBN: 9781003096771
Category : Computers
Languages : en
Pages : 0

Get Book Here

Book Description
Machine Translation and Transliteration involving Related, Low-resource Languages discusses an important aspect of natural language processing that has received lesser attention: translation and transliteration involving related languages in a low-resource setting. This is a very relevant real-world scenario for people living in neighbouring states/provinces/countries who speak similar languages and need to communicate with each other, but training data to build supporting MT systems is limited. The book discusses different characteristics of related languages with rich examples and draws connections between two problems: translation for related languages and transliteration. It shows how linguistic similarities can be utilized to learn MT systems for related languages with limited data. It comprehensively discusses the use of subword-level models and multilinguality to utilize these linguistic similarities. The second part of the book explores methods for machine transliteration involving related languages based on multilingual and unsupervised approaches. Through extensive experiments over a wide variety of languages, the efficacy of these methods is established. Features Novel methods for machine translation and transliteration between related languages, supported with experiments on a wide variety of languages. An overview of past literature on machine translation for related languages. A case study about machine translation for related languages between 10 major languages from India, which is one of the most linguistically diverse country in the world. The book presents important concepts and methods for machine translation involving related languages. In general, it serves as a good reference to NLP for related languages. It is intended for students, researchers and professionals interested in Machine Translation, Translation Studies, Multilingual Computing Machine and Natural Language Processing. It can be used as reference reading for courses in NLP and machine translation. Anoop Kunchukuttan is a Senior Applied Researcher at Microsoft India. His research spans various areas on multilingual and low-resource NLP. Pushpak Bhattacharyya is a Professor at the Department of Computer Science, IIT Bombay. His research areas are Natural Language Processing, Machine Learning and AI (NLP-ML-AI). Prof. Bhattacharyya has published more than 350 research papers in various areas of NLP.

Addressing Issues of Learner Diversity in English Language Education

Addressing Issues of Learner Diversity in English Language Education PDF Author: Tran, Thao Quoc
Publisher: IGI Global
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 377

Get Book Here

Book Description
In the dynamic context of English language education, learners bring many differences in identity, motivation, engagement, ability, and more. Addressing Issues of Learner Diversity in English Language Education recognizes that traditional, one-size-fits-all approaches to language education are insufficient in meeting the needs of a varied and global learner population. It grapples with effectively teaching English to individuals with diverse linguistic backgrounds, learning styles, and cultural contexts. The challenges range from learner autonomy and motivation issues to navigating mixed-level classes and integrating technology into language teaching. Drawing on current research trends and cutting-edge methodologies, this book captures the diverse voices of contributors from various ESL/EFL settings, offering context-specific solutions to the myriad challenges faced in language education. The book illuminates the nuanced phenomena within English language education; it showcases innovative theoretical frameworks and up-to-date research findings. By addressing learners as singular individuals and collectives, the publication guides educators in enhancing individual competencies and maximizing the potential of each learner.

Empowering Low-Resource Languages With NLP Solutions

Empowering Low-Resource Languages With NLP Solutions PDF Author: Pakray, Partha
Publisher: IGI Global
ISBN:
Category : Computers
Languages : en
Pages : 328

Get Book Here

Book Description
In our increasingly interconnected world, low-resource languages face the threat of oblivion. These linguistic gems, often spoken by marginalized communities, are at risk of fading away due to limited data and resources. The neglect of these languages not only erodes cultural diversity but also hinders effective communication, education, and social inclusion. Academics, practitioners, and policymakers grapple with the urgent need for a comprehensive solution to preserve and empower these vulnerable languages. Empowering Low-Resource Languages With NLP Solutions is a pioneering book that stands as the definitive answer to the pressing problem at hand. It tackles head-on the challenges that low-resource languages face in the realm of Natural Language Processing (NLP). Through real-world case studies, expert insights, and a comprehensive array of topics, this book equips its readers—academics, researchers, practitioners, and policymakers—with the tools, strategies, and ethical considerations needed to address the crisis facing low-resource languages.

Computational Intelligence in Communications and Business Analytics

Computational Intelligence in Communications and Business Analytics PDF Author: Somnath Mukhopadhyay
Publisher: Springer Nature
ISBN: 3031107667
Category : Computers
Languages : en
Pages : 460

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 4th International Conference on Computational Intelligence, Communications, and Business Analytics, CICBA 2022, held in Silchar, India, in January 2022. The 21 full papers and 13 short papers presented in this volume were carefully reviewed and selected from 107 submissions. The papers are organized in topical sections on computational intelligence; computational intelligence in communication; and computational intelligence in analytics.

Computational Linguistics and Intelligent Text Processing

Computational Linguistics and Intelligent Text Processing PDF Author: Alexander Gelbukh
Publisher: Springer
ISBN: 3319754874
Category : Computers
Languages : en
Pages : 652

Get Book Here

Book Description
The two-volume set LNCS 9623 + 9624 constitutes revised selected papers from the CICLing 2016 conference which took place in Konya, Turkey, in April 2016. The total of 89 papers presented in the two volumes was carefully reviewed and selected from 298 submissions. The book also contains 4 invited papers and a memorial paper on Adam Kilgarriff’s Legacy to Computational Linguistics. The papers are organized in the following topical sections: Part I: In memoriam of Adam Kilgarriff; general formalisms; embeddings, language modeling, and sequence labeling; lexical resources and terminology extraction; morphology and part-of-speech tagging; syntax and chunking; named entity recognition; word sense disambiguation and anaphora resolution; semantics, discourse, and dialog. Part II: machine translation and multilingualism; sentiment analysis, opinion mining, subjectivity, and social media; text classification and categorization; information extraction; and applications.

Language Studies in India

Language Studies in India PDF Author: Rajesh Kumar
Publisher: Springer Nature
ISBN: 9811952760
Category : Philosophy
Languages : en
Pages : 378

Get Book Here

Book Description
This book addresses a wide range of aspects of the study of language in a variety of domains such as cognition, change, acquisition, structure, philosophy, politics, and education. It offers a renewed discussion on normative understanding of these concepts and opens up avenues for a fresh look at these concepts. Each contribution in this book captures a wide range of perspectives and underlines the vigorous role of language, which happens to be central to the arguments contained therein. The uniqueness of this book lies in the fact that it presents simplified perspective on various complex aspects of language. It addresses a wide range of audiences, who do not necessarily need to have a technical background in linguistics. It focuses on complex relations between language and cognition, politics, education to name a few with reference to cognition, change, and acquisition. This book is for researchers with an interest in the field of language studies, applied linguistics, and socio-linguistics.

Machine Intelligence and Data Science Applications

Machine Intelligence and Data Science Applications PDF Author: Amar Ramdane-Cherif
Publisher: Springer Nature
ISBN: 9819916208
Category : Technology & Engineering
Languages : en
Pages : 559

Get Book Here

Book Description
This book is a compilation of peer-reviewed papers presented at the International Conference on Machine Intelligence and Data Science Applications (MIDAS 2022), held on October 28 and 29, 2022, at the University of Versailles—Paris-Saclay, France. The book covers applications in various fields like data science, machine intelligence, image processing, natural language processing, computer vision, sentiment analysis, and speech and gesture analysis. It also includes interdisciplinary applications like legal, healthcare, smart society, cyber-physical system, and smart agriculture. The book is a good reference for computer science engineers, lecturers/researchers in the machine intelligence discipline, and engineering graduates.

Speech and Language Technologies for Low-Resource Languages

Speech and Language Technologies for Low-Resource Languages PDF Author: Bharathi Raja Chakravarthi
Publisher: Springer Nature
ISBN: 3031584953
Category :
Languages : en
Pages : 470

Get Book Here

Book Description


Neural Machine Translation

Neural Machine Translation PDF Author: Philipp Koehn
Publisher: Cambridge University Press
ISBN: 1108497322
Category : Computers
Languages : en
Pages : 409

Get Book Here

Book Description
Learn how to build machine translation systems with deep learning from the ground up, from basic concepts to cutting-edge research.