Author: Anoop Kunchukuttan
Publisher: CRC Press
ISBN: 1000422410
Category : Computers
Languages : en
Pages : 215
Book Description
Machine Translation and Transliteration involving Related, Low-resource Languages discusses an important aspect of natural language processing that has received lesser attention: translation and transliteration involving related languages in a low-resource setting. This is a very relevant real-world scenario for people living in neighbouring states/provinces/countries who speak similar languages and need to communicate with each other, but training data to build supporting MT systems is limited. The book discusses different characteristics of related languages with rich examples and draws connections between two problems: translation for related languages and transliteration. It shows how linguistic similarities can be utilized to learn MT systems for related languages with limited data. It comprehensively discusses the use of subword-level models and multilinguality to utilize these linguistic similarities. The second part of the book explores methods for machine transliteration involving related languages based on multilingual and unsupervised approaches. Through extensive experiments over a wide variety of languages, the efficacy of these methods is established. Features Novel methods for machine translation and transliteration between related languages, supported with experiments on a wide variety of languages. An overview of past literature on machine translation for related languages. A case study about machine translation for related languages between 10 major languages from India, which is one of the most linguistically diverse country in the world. The book presents important concepts and methods for machine translation involving related languages. In general, it serves as a good reference to NLP for related languages. It is intended for students, researchers and professionals interested in Machine Translation, Translation Studies, Multilingual Computing Machine and Natural Language Processing. It can be used as reference reading for courses in NLP and machine translation. Anoop Kunchukuttan is a Senior Applied Researcher at Microsoft India. His research spans various areas on multilingual and low-resource NLP. Pushpak Bhattacharyya is a Professor at the Department of Computer Science, IIT Bombay. His research areas are Natural Language Processing, Machine Learning and AI (NLP-ML-AI). Prof. Bhattacharyya has published more than 350 research papers in various areas of NLP.
Machine Translation and Transliteration involving Related, Low-resource Languages
Author: Anoop Kunchukuttan
Publisher: CRC Press
ISBN: 1000422410
Category : Computers
Languages : en
Pages : 215
Book Description
Machine Translation and Transliteration involving Related, Low-resource Languages discusses an important aspect of natural language processing that has received lesser attention: translation and transliteration involving related languages in a low-resource setting. This is a very relevant real-world scenario for people living in neighbouring states/provinces/countries who speak similar languages and need to communicate with each other, but training data to build supporting MT systems is limited. The book discusses different characteristics of related languages with rich examples and draws connections between two problems: translation for related languages and transliteration. It shows how linguistic similarities can be utilized to learn MT systems for related languages with limited data. It comprehensively discusses the use of subword-level models and multilinguality to utilize these linguistic similarities. The second part of the book explores methods for machine transliteration involving related languages based on multilingual and unsupervised approaches. Through extensive experiments over a wide variety of languages, the efficacy of these methods is established. Features Novel methods for machine translation and transliteration between related languages, supported with experiments on a wide variety of languages. An overview of past literature on machine translation for related languages. A case study about machine translation for related languages between 10 major languages from India, which is one of the most linguistically diverse country in the world. The book presents important concepts and methods for machine translation involving related languages. In general, it serves as a good reference to NLP for related languages. It is intended for students, researchers and professionals interested in Machine Translation, Translation Studies, Multilingual Computing Machine and Natural Language Processing. It can be used as reference reading for courses in NLP and machine translation. Anoop Kunchukuttan is a Senior Applied Researcher at Microsoft India. His research spans various areas on multilingual and low-resource NLP. Pushpak Bhattacharyya is a Professor at the Department of Computer Science, IIT Bombay. His research areas are Natural Language Processing, Machine Learning and AI (NLP-ML-AI). Prof. Bhattacharyya has published more than 350 research papers in various areas of NLP.
Publisher: CRC Press
ISBN: 1000422410
Category : Computers
Languages : en
Pages : 215
Book Description
Machine Translation and Transliteration involving Related, Low-resource Languages discusses an important aspect of natural language processing that has received lesser attention: translation and transliteration involving related languages in a low-resource setting. This is a very relevant real-world scenario for people living in neighbouring states/provinces/countries who speak similar languages and need to communicate with each other, but training data to build supporting MT systems is limited. The book discusses different characteristics of related languages with rich examples and draws connections between two problems: translation for related languages and transliteration. It shows how linguistic similarities can be utilized to learn MT systems for related languages with limited data. It comprehensively discusses the use of subword-level models and multilinguality to utilize these linguistic similarities. The second part of the book explores methods for machine transliteration involving related languages based on multilingual and unsupervised approaches. Through extensive experiments over a wide variety of languages, the efficacy of these methods is established. Features Novel methods for machine translation and transliteration between related languages, supported with experiments on a wide variety of languages. An overview of past literature on machine translation for related languages. A case study about machine translation for related languages between 10 major languages from India, which is one of the most linguistically diverse country in the world. The book presents important concepts and methods for machine translation involving related languages. In general, it serves as a good reference to NLP for related languages. It is intended for students, researchers and professionals interested in Machine Translation, Translation Studies, Multilingual Computing Machine and Natural Language Processing. It can be used as reference reading for courses in NLP and machine translation. Anoop Kunchukuttan is a Senior Applied Researcher at Microsoft India. His research spans various areas on multilingual and low-resource NLP. Pushpak Bhattacharyya is a Professor at the Department of Computer Science, IIT Bombay. His research areas are Natural Language Processing, Machine Learning and AI (NLP-ML-AI). Prof. Bhattacharyya has published more than 350 research papers in various areas of NLP.
Machine Translation and Transliteration Involving Related and Low-resource Languages
Author: Anoop Kunchukuttan
Publisher: Chapman & Hall/CRC
ISBN: 9781003096771
Category : Computers
Languages : en
Pages : 0
Book Description
Machine Translation and Transliteration involving Related, Low-resource Languages discusses an important aspect of natural language processing that has received lesser attention: translation and transliteration involving related languages in a low-resource setting. This is a very relevant real-world scenario for people living in neighbouring states/provinces/countries who speak similar languages and need to communicate with each other, but training data to build supporting MT systems is limited. The book discusses different characteristics of related languages with rich examples and draws connections between two problems: translation for related languages and transliteration. It shows how linguistic similarities can be utilized to learn MT systems for related languages with limited data. It comprehensively discusses the use of subword-level models and multilinguality to utilize these linguistic similarities. The second part of the book explores methods for machine transliteration involving related languages based on multilingual and unsupervised approaches. Through extensive experiments over a wide variety of languages, the efficacy of these methods is established. Features Novel methods for machine translation and transliteration between related languages, supported with experiments on a wide variety of languages. An overview of past literature on machine translation for related languages. A case study about machine translation for related languages between 10 major languages from India, which is one of the most linguistically diverse country in the world. The book presents important concepts and methods for machine translation involving related languages. In general, it serves as a good reference to NLP for related languages. It is intended for students, researchers and professionals interested in Machine Translation, Translation Studies, Multilingual Computing Machine and Natural Language Processing. It can be used as reference reading for courses in NLP and machine translation. Anoop Kunchukuttan is a Senior Applied Researcher at Microsoft India. His research spans various areas on multilingual and low-resource NLP. Pushpak Bhattacharyya is a Professor at the Department of Computer Science, IIT Bombay. His research areas are Natural Language Processing, Machine Learning and AI (NLP-ML-AI). Prof. Bhattacharyya has published more than 350 research papers in various areas of NLP.
Publisher: Chapman & Hall/CRC
ISBN: 9781003096771
Category : Computers
Languages : en
Pages : 0
Book Description
Machine Translation and Transliteration involving Related, Low-resource Languages discusses an important aspect of natural language processing that has received lesser attention: translation and transliteration involving related languages in a low-resource setting. This is a very relevant real-world scenario for people living in neighbouring states/provinces/countries who speak similar languages and need to communicate with each other, but training data to build supporting MT systems is limited. The book discusses different characteristics of related languages with rich examples and draws connections between two problems: translation for related languages and transliteration. It shows how linguistic similarities can be utilized to learn MT systems for related languages with limited data. It comprehensively discusses the use of subword-level models and multilinguality to utilize these linguistic similarities. The second part of the book explores methods for machine transliteration involving related languages based on multilingual and unsupervised approaches. Through extensive experiments over a wide variety of languages, the efficacy of these methods is established. Features Novel methods for machine translation and transliteration between related languages, supported with experiments on a wide variety of languages. An overview of past literature on machine translation for related languages. A case study about machine translation for related languages between 10 major languages from India, which is one of the most linguistically diverse country in the world. The book presents important concepts and methods for machine translation involving related languages. In general, it serves as a good reference to NLP for related languages. It is intended for students, researchers and professionals interested in Machine Translation, Translation Studies, Multilingual Computing Machine and Natural Language Processing. It can be used as reference reading for courses in NLP and machine translation. Anoop Kunchukuttan is a Senior Applied Researcher at Microsoft India. His research spans various areas on multilingual and low-resource NLP. Pushpak Bhattacharyya is a Professor at the Department of Computer Science, IIT Bombay. His research areas are Natural Language Processing, Machine Learning and AI (NLP-ML-AI). Prof. Bhattacharyya has published more than 350 research papers in various areas of NLP.
Machine Translation and Transliteration involving Related, Low-resource Languages
Author: Anoop Kunchukuttan
Publisher: CRC Press
ISBN: 100042166X
Category : Computers
Languages : en
Pages : 220
Book Description
Machine Translation and Transliteration involving Related, Low-resource Languages discusses an important aspect of natural language processing that has received lesser attention: translation and transliteration involving related languages in a low-resource setting. This is a very relevant real-world scenario for people living in neighbouring states/provinces/countries who speak similar languages and need to communicate with each other, but training data to build supporting MT systems is limited. The book discusses different characteristics of related languages with rich examples and draws connections between two problems: translation for related languages and transliteration. It shows how linguistic similarities can be utilized to learn MT systems for related languages with limited data. It comprehensively discusses the use of subword-level models and multilinguality to utilize these linguistic similarities. The second part of the book explores methods for machine transliteration involving related languages based on multilingual and unsupervised approaches. Through extensive experiments over a wide variety of languages, the efficacy of these methods is established. Features Novel methods for machine translation and transliteration between related languages, supported with experiments on a wide variety of languages. An overview of past literature on machine translation for related languages. A case study about machine translation for related languages between 10 major languages from India, which is one of the most linguistically diverse country in the world. The book presents important concepts and methods for machine translation involving related languages. In general, it serves as a good reference to NLP for related languages. It is intended for students, researchers and professionals interested in Machine Translation, Translation Studies, Multilingual Computing Machine and Natural Language Processing. It can be used as reference reading for courses in NLP and machine translation. Anoop Kunchukuttan is a Senior Applied Researcher at Microsoft India. His research spans various areas on multilingual and low-resource NLP. Pushpak Bhattacharyya is a Professor at the Department of Computer Science, IIT Bombay. His research areas are Natural Language Processing, Machine Learning and AI (NLP-ML-AI). Prof. Bhattacharyya has published more than 350 research papers in various areas of NLP.
Publisher: CRC Press
ISBN: 100042166X
Category : Computers
Languages : en
Pages : 220
Book Description
Machine Translation and Transliteration involving Related, Low-resource Languages discusses an important aspect of natural language processing that has received lesser attention: translation and transliteration involving related languages in a low-resource setting. This is a very relevant real-world scenario for people living in neighbouring states/provinces/countries who speak similar languages and need to communicate with each other, but training data to build supporting MT systems is limited. The book discusses different characteristics of related languages with rich examples and draws connections between two problems: translation for related languages and transliteration. It shows how linguistic similarities can be utilized to learn MT systems for related languages with limited data. It comprehensively discusses the use of subword-level models and multilinguality to utilize these linguistic similarities. The second part of the book explores methods for machine transliteration involving related languages based on multilingual and unsupervised approaches. Through extensive experiments over a wide variety of languages, the efficacy of these methods is established. Features Novel methods for machine translation and transliteration between related languages, supported with experiments on a wide variety of languages. An overview of past literature on machine translation for related languages. A case study about machine translation for related languages between 10 major languages from India, which is one of the most linguistically diverse country in the world. The book presents important concepts and methods for machine translation involving related languages. In general, it serves as a good reference to NLP for related languages. It is intended for students, researchers and professionals interested in Machine Translation, Translation Studies, Multilingual Computing Machine and Natural Language Processing. It can be used as reference reading for courses in NLP and machine translation. Anoop Kunchukuttan is a Senior Applied Researcher at Microsoft India. His research spans various areas on multilingual and low-resource NLP. Pushpak Bhattacharyya is a Professor at the Department of Computer Science, IIT Bombay. His research areas are Natural Language Processing, Machine Learning and AI (NLP-ML-AI). Prof. Bhattacharyya has published more than 350 research papers in various areas of NLP.
Addressing Issues of Learner Diversity in English Language Education
Author: Tran, Thao Quoc
Publisher: IGI Global
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 377
Book Description
In the dynamic context of English language education, learners bring many differences in identity, motivation, engagement, ability, and more. Addressing Issues of Learner Diversity in English Language Education recognizes that traditional, one-size-fits-all approaches to language education are insufficient in meeting the needs of a varied and global learner population. It grapples with effectively teaching English to individuals with diverse linguistic backgrounds, learning styles, and cultural contexts. The challenges range from learner autonomy and motivation issues to navigating mixed-level classes and integrating technology into language teaching. Drawing on current research trends and cutting-edge methodologies, this book captures the diverse voices of contributors from various ESL/EFL settings, offering context-specific solutions to the myriad challenges faced in language education. The book illuminates the nuanced phenomena within English language education; it showcases innovative theoretical frameworks and up-to-date research findings. By addressing learners as singular individuals and collectives, the publication guides educators in enhancing individual competencies and maximizing the potential of each learner.
Publisher: IGI Global
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 377
Book Description
In the dynamic context of English language education, learners bring many differences in identity, motivation, engagement, ability, and more. Addressing Issues of Learner Diversity in English Language Education recognizes that traditional, one-size-fits-all approaches to language education are insufficient in meeting the needs of a varied and global learner population. It grapples with effectively teaching English to individuals with diverse linguistic backgrounds, learning styles, and cultural contexts. The challenges range from learner autonomy and motivation issues to navigating mixed-level classes and integrating technology into language teaching. Drawing on current research trends and cutting-edge methodologies, this book captures the diverse voices of contributors from various ESL/EFL settings, offering context-specific solutions to the myriad challenges faced in language education. The book illuminates the nuanced phenomena within English language education; it showcases innovative theoretical frameworks and up-to-date research findings. By addressing learners as singular individuals and collectives, the publication guides educators in enhancing individual competencies and maximizing the potential of each learner.
Machine Intelligence and Data Science Applications
Author: Amar Ramdane-Cherif
Publisher: Springer Nature
ISBN: 9819916208
Category : Technology & Engineering
Languages : en
Pages : 559
Book Description
This book is a compilation of peer-reviewed papers presented at the International Conference on Machine Intelligence and Data Science Applications (MIDAS 2022), held on October 28 and 29, 2022, at the University of Versailles—Paris-Saclay, France. The book covers applications in various fields like data science, machine intelligence, image processing, natural language processing, computer vision, sentiment analysis, and speech and gesture analysis. It also includes interdisciplinary applications like legal, healthcare, smart society, cyber-physical system, and smart agriculture. The book is a good reference for computer science engineers, lecturers/researchers in the machine intelligence discipline, and engineering graduates.
Publisher: Springer Nature
ISBN: 9819916208
Category : Technology & Engineering
Languages : en
Pages : 559
Book Description
This book is a compilation of peer-reviewed papers presented at the International Conference on Machine Intelligence and Data Science Applications (MIDAS 2022), held on October 28 and 29, 2022, at the University of Versailles—Paris-Saclay, France. The book covers applications in various fields like data science, machine intelligence, image processing, natural language processing, computer vision, sentiment analysis, and speech and gesture analysis. It also includes interdisciplinary applications like legal, healthcare, smart society, cyber-physical system, and smart agriculture. The book is a good reference for computer science engineers, lecturers/researchers in the machine intelligence discipline, and engineering graduates.
Iaeng Transactions On Engineering Sciences: Special Issue For The International Association Of Engineers Conferences 2015
Author: Sio-iong Ao
Publisher: World Scientific
ISBN: 9813142731
Category : Technology & Engineering
Languages : en
Pages : 469
Book Description
Two large international conferences on Advances in Engineering Sciences were held in Hong Kong, March 18-20, 2015, under the International MultiConference of Engineers and Computer Scientists (IMECS 2015), and in London, UK, 1-3 July, 2015, under the World Congress on Engineering (WCE 2015) respectively. This volume contains 35 revised and extended research articles written by prominent researchers participating in the conferences. Topics covered include engineering mathematics, computer science, electrical engineering, manufacturing engineering, industrial engineering, and industrial applications. The book offers state-of-the-art advances in engineering sciences and also serves as an excellent reference work for researchers and graduate students working with/on engineering sciences.
Publisher: World Scientific
ISBN: 9813142731
Category : Technology & Engineering
Languages : en
Pages : 469
Book Description
Two large international conferences on Advances in Engineering Sciences were held in Hong Kong, March 18-20, 2015, under the International MultiConference of Engineers and Computer Scientists (IMECS 2015), and in London, UK, 1-3 July, 2015, under the World Congress on Engineering (WCE 2015) respectively. This volume contains 35 revised and extended research articles written by prominent researchers participating in the conferences. Topics covered include engineering mathematics, computer science, electrical engineering, manufacturing engineering, industrial engineering, and industrial applications. The book offers state-of-the-art advances in engineering sciences and also serves as an excellent reference work for researchers and graduate students working with/on engineering sciences.
Speech and Language Technologies for Low-Resource Languages
Author: Bharathi Raja Chakravarthi
Publisher: Springer Nature
ISBN: 3031584953
Category :
Languages : en
Pages : 470
Book Description
Publisher: Springer Nature
ISBN: 3031584953
Category :
Languages : en
Pages : 470
Book Description
Neural Machine Translation
Author: Philipp Koehn
Publisher: Cambridge University Press
ISBN: 1108497322
Category : Computers
Languages : en
Pages : 409
Book Description
Learn how to build machine translation systems with deep learning from the ground up, from basic concepts to cutting-edge research.
Publisher: Cambridge University Press
ISBN: 1108497322
Category : Computers
Languages : en
Pages : 409
Book Description
Learn how to build machine translation systems with deep learning from the ground up, from basic concepts to cutting-edge research.
Advances in Artificial Intelligence
Author: Atefeh Farzindar
Publisher: Springer Science & Business Media
ISBN: 3642130585
Category : Computers
Languages : en
Pages : 440
Book Description
This book constitutes the refereed proceedings of the 23rd Conference on Artificial Intelligence, Canadian AI 2010, held in Ottawa, Canada, in May/June 2010. The 22 revised full papers presented together with 26 revised short papers, 12 papers from the graduate student symposium and the abstracts of 3 keynote presentations were carefully reviewed and selected from 90 submissions. The papers are organized in topical sections on text classification; text summarization and IR; reasoning and e-commerce; probabilistic machine learning; neural networks and swarm optimization; machine learning and data mining; natural language processing; text analytics; reasoning and planning; e-commerce; semantic web; machine learning; and data mining.
Publisher: Springer Science & Business Media
ISBN: 3642130585
Category : Computers
Languages : en
Pages : 440
Book Description
This book constitutes the refereed proceedings of the 23rd Conference on Artificial Intelligence, Canadian AI 2010, held in Ottawa, Canada, in May/June 2010. The 22 revised full papers presented together with 26 revised short papers, 12 papers from the graduate student symposium and the abstracts of 3 keynote presentations were carefully reviewed and selected from 90 submissions. The papers are organized in topical sections on text classification; text summarization and IR; reasoning and e-commerce; probabilistic machine learning; neural networks and swarm optimization; machine learning and data mining; natural language processing; text analytics; reasoning and planning; e-commerce; semantic web; machine learning; and data mining.
Machine Translation
Author: Pushpak Bhattacharyya
Publisher: CRC Press
ISBN: 1439897190
Category : Business & Economics
Languages : en
Pages : 261
Book Description
This book compares and contrasts the principles and practices of rule-based machine translation (RBMT), statistical machine translation (SMT), and example-based machine translation (EBMT). Presenting numerous examples, the text introduces language divergence as the fundamental challenge to machine translation, emphasizes and works out word alignment, explores IBM models of machine translation, covers the mathematics of phrase-based SMT, provides complete walk-throughs of the working of interlingua-based and transfer-based RBMT, and analyzes EBMT, showing how translation parts can be extracted and recombined to automatically translate a new input.
Publisher: CRC Press
ISBN: 1439897190
Category : Business & Economics
Languages : en
Pages : 261
Book Description
This book compares and contrasts the principles and practices of rule-based machine translation (RBMT), statistical machine translation (SMT), and example-based machine translation (EBMT). Presenting numerous examples, the text introduces language divergence as the fundamental challenge to machine translation, emphasizes and works out word alignment, explores IBM models of machine translation, covers the mathematics of phrase-based SMT, provides complete walk-throughs of the working of interlingua-based and transfer-based RBMT, and analyzes EBMT, showing how translation parts can be extracted and recombined to automatically translate a new input.