Author: Dimitris Bertsimas
Publisher:
ISBN: 9781733788502
Category : Machine learning
Languages : en
Pages : 589
Book Description
Machine Learning Under a Modern Optimization Lens
Author: Dimitris Bertsimas
Publisher:
ISBN: 9781733788502
Category : Machine learning
Languages : en
Pages : 589
Book Description
Publisher:
ISBN: 9781733788502
Category : Machine learning
Languages : en
Pages : 589
Book Description
Optimization Over Integers
Author: Dimitris Bertsimas
Publisher:
ISBN: 9780975914625
Category : Algorithms
Languages : en
Pages : 602
Book Description
Publisher:
ISBN: 9780975914625
Category : Algorithms
Languages : en
Pages : 602
Book Description
Advanced Finite Element Method in Structural Engineering
Author: Yu-Qiu Long
Publisher: Springer Science & Business Media
ISBN: 3642003168
Category : Technology & Engineering
Languages : en
Pages : 715
Book Description
Advanced Finite Element Method in Structural Engineering systematically introduces the research work on the Finite Element Method (FEM), which was completed by Prof. Yu-qiu Long and his research group in the past 25 years. Seven original theoretical achievements - for instance, the Generalized Conforming Element method, to name one - and their applications in the fields of structural engineering and computational mechanics are discussed in detail. The book also shows the new strategies for avoiding five difficulties that exist in traditional FEM (shear-locking problem of thick plate elements; sensitivity problem to mesh distortion; non-convergence problem of non-conforming elements; accuracy loss problem of stress solutions by displacement-based elements; stress singular point problem) by utilizing foregoing achievements.
Publisher: Springer Science & Business Media
ISBN: 3642003168
Category : Technology & Engineering
Languages : en
Pages : 715
Book Description
Advanced Finite Element Method in Structural Engineering systematically introduces the research work on the Finite Element Method (FEM), which was completed by Prof. Yu-qiu Long and his research group in the past 25 years. Seven original theoretical achievements - for instance, the Generalized Conforming Element method, to name one - and their applications in the fields of structural engineering and computational mechanics are discussed in detail. The book also shows the new strategies for avoiding five difficulties that exist in traditional FEM (shear-locking problem of thick plate elements; sensitivity problem to mesh distortion; non-convergence problem of non-conforming elements; accuracy loss problem of stress solutions by displacement-based elements; stress singular point problem) by utilizing foregoing achievements.
Machine Learning Refined
Author: Jeremy Watt
Publisher: Cambridge University Press
ISBN: 1108480721
Category : Computers
Languages : en
Pages : 597
Book Description
An intuitive approach to machine learning covering key concepts, real-world applications, and practical Python coding exercises.
Publisher: Cambridge University Press
ISBN: 1108480721
Category : Computers
Languages : en
Pages : 597
Book Description
An intuitive approach to machine learning covering key concepts, real-world applications, and practical Python coding exercises.
Data, Models, and Decisions
Author: Dimitris Bertsimas
Publisher: Ingram
ISBN: 9780975914601
Category : Business & Economics
Languages : en
Pages : 530
Book Description
Combines topics from two traditionally distinct quantitative subjects, probability/statistics and management science/optimization, in a unified treatment of quantitative methods and models for management. Stresses those fundamental concepts that are most important for the practical analysis of management decisions: modeling and evaluating uncertainty explicitly, understanding the dynamic nature of decision-making, using historical data and limited information effectively, simulating complex systems, and allocating scarce resources optimally.
Publisher: Ingram
ISBN: 9780975914601
Category : Business & Economics
Languages : en
Pages : 530
Book Description
Combines topics from two traditionally distinct quantitative subjects, probability/statistics and management science/optimization, in a unified treatment of quantitative methods and models for management. Stresses those fundamental concepts that are most important for the practical analysis of management decisions: modeling and evaluating uncertainty explicitly, understanding the dynamic nature of decision-making, using historical data and limited information effectively, simulating complex systems, and allocating scarce resources optimally.
Probabilistic Machine Learning
Author: Kevin P. Murphy
Publisher: MIT Press
ISBN: 0262369303
Category : Computers
Languages : en
Pages : 858
Book Description
A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author’s 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach.
Publisher: MIT Press
ISBN: 0262369303
Category : Computers
Languages : en
Pages : 858
Book Description
A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author’s 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach.
Handbook On Big Data And Machine Learning In The Physical Sciences (In 2 Volumes)
Author:
Publisher: World Scientific
ISBN: 9811204586
Category : Computers
Languages : en
Pages : 1001
Book Description
This compendium provides a comprehensive collection of the emergent applications of big data, machine learning, and artificial intelligence technologies to present day physical sciences ranging from materials theory and imaging to predictive synthesis and automated research. This area of research is among the most rapidly developing in the last several years in areas spanning materials science, chemistry, and condensed matter physics.Written by world renowned researchers, the compilation of two authoritative volumes provides a distinct summary of the modern advances in instrument — driven data generation and analytics, establishing the links between the big data and predictive theories, and outlining the emerging field of data and physics-driven predictive and autonomous systems.
Publisher: World Scientific
ISBN: 9811204586
Category : Computers
Languages : en
Pages : 1001
Book Description
This compendium provides a comprehensive collection of the emergent applications of big data, machine learning, and artificial intelligence technologies to present day physical sciences ranging from materials theory and imaging to predictive synthesis and automated research. This area of research is among the most rapidly developing in the last several years in areas spanning materials science, chemistry, and condensed matter physics.Written by world renowned researchers, the compilation of two authoritative volumes provides a distinct summary of the modern advances in instrument — driven data generation and analytics, establishing the links between the big data and predictive theories, and outlining the emerging field of data and physics-driven predictive and autonomous systems.
The Lion Way
Author: Roberto Battiti
Publisher: Createspace Independent Publishing Platform
ISBN: 9781496034021
Category : Artificial intelligence
Languages : en
Pages : 0
Book Description
Learning and Intelligent Optimization (LION) is the combination of learning from data and optimization applied to solve complex and dynamic problems. The LION way is about increasing the automation level and connecting data directly to decisions and actions. More power is directly in the hands of decision makers in a self-service manner, without resorting to intermediate layers of data scientists. LION is a complex array of mechanisms, like the engine in an automobile, but the user (driver) does not need to know the inner workings of the engine in order to realize its tremendous benefits. LION's adoption will create a prairie fire of innovation which will reach most businesses in the next decades. Businesses, like plants in wildfire-prone ecosystems, will survive and prosper by adapting and embracing LION techniques, or they risk being transformed from giant trees to ashes by the spreading competition.
Publisher: Createspace Independent Publishing Platform
ISBN: 9781496034021
Category : Artificial intelligence
Languages : en
Pages : 0
Book Description
Learning and Intelligent Optimization (LION) is the combination of learning from data and optimization applied to solve complex and dynamic problems. The LION way is about increasing the automation level and connecting data directly to decisions and actions. More power is directly in the hands of decision makers in a self-service manner, without resorting to intermediate layers of data scientists. LION is a complex array of mechanisms, like the engine in an automobile, but the user (driver) does not need to know the inner workings of the engine in order to realize its tremendous benefits. LION's adoption will create a prairie fire of innovation which will reach most businesses in the next decades. Businesses, like plants in wildfire-prone ecosystems, will survive and prosper by adapting and embracing LION techniques, or they risk being transformed from giant trees to ashes by the spreading competition.
The Analytics Edge
Author: Dimitris Bertsimas
Publisher:
ISBN: 9780989910897
Category : Computer simulation
Languages : en
Pages : 462
Book Description
"Provides a unified, insightful, modern, and entertaining treatment of analytics. The book covers the science of using data to build models, improve decisions, and ultimately add value to institutions and individuals"--Back cover.
Publisher:
ISBN: 9780989910897
Category : Computer simulation
Languages : en
Pages : 462
Book Description
"Provides a unified, insightful, modern, and entertaining treatment of analytics. The book covers the science of using data to build models, improve decisions, and ultimately add value to institutions and individuals"--Back cover.
Personalized Machine Learning
Author: Julian McAuley
Publisher: Cambridge University Press
ISBN: 1009008579
Category : Computers
Languages : en
Pages : 338
Book Description
Every day we interact with machine learning systems offering individualized predictions for our entertainment, social connections, purchases, or health. These involve several modalities of data, from sequences of clicks to text, images, and social interactions. This book introduces common principles and methods that underpin the design of personalized predictive models for a variety of settings and modalities. The book begins by revising 'traditional' machine learning models, focusing on adapting them to settings involving user data, then presents techniques based on advanced principles such as matrix factorization, deep learning, and generative modeling, and concludes with a detailed study of the consequences and risks of deploying personalized predictive systems. A series of case studies in domains ranging from e-commerce to health plus hands-on projects and code examples will give readers understanding and experience with large-scale real-world datasets and the ability to design models and systems for a wide range of applications.
Publisher: Cambridge University Press
ISBN: 1009008579
Category : Computers
Languages : en
Pages : 338
Book Description
Every day we interact with machine learning systems offering individualized predictions for our entertainment, social connections, purchases, or health. These involve several modalities of data, from sequences of clicks to text, images, and social interactions. This book introduces common principles and methods that underpin the design of personalized predictive models for a variety of settings and modalities. The book begins by revising 'traditional' machine learning models, focusing on adapting them to settings involving user data, then presents techniques based on advanced principles such as matrix factorization, deep learning, and generative modeling, and concludes with a detailed study of the consequences and risks of deploying personalized predictive systems. A series of case studies in domains ranging from e-commerce to health plus hands-on projects and code examples will give readers understanding and experience with large-scale real-world datasets and the ability to design models and systems for a wide range of applications.