Author: James Eric Mason
Publisher: Springer
ISBN: 3319290886
Category : Technology & Engineering
Languages : en
Pages : 247
Book Description
This book focuses on how machine learning techniques can be used to analyze and make use of one particular category of behavioral biometrics known as the gait biometric. A comprehensive Ground Reaction Force (GRF)-based Gait Biometrics Recognition framework is proposed and validated by experiments. In addition, an in-depth analysis of existing recognition techniques that are best suited for performing footstep GRF-based person recognition is also proposed, as well as a comparison of feature extractors, normalizers, and classifiers configurations that were never directly compared with one another in any previous GRF recognition research. Finally, a detailed theoretical overview of many existing machine learning techniques is presented, leading to a proposal of two novel data processing techniques developed specifically for the purpose of gait biometric recognition using GRF. This book · introduces novel machine-learning-based temporal normalization techniques · bridges research gaps concerning the effect of footwear and stepping speed on footstep GRF-based person recognition · provides detailed discussions of key research challenges and open research issues in gait biometrics recognition · compares biometrics systems trained and tested with the same footwear against those trained and tested with different footwear
Machine Learning Techniques for Gait Biometric Recognition
Author: James Eric Mason
Publisher: Springer
ISBN: 3319290886
Category : Technology & Engineering
Languages : en
Pages : 247
Book Description
This book focuses on how machine learning techniques can be used to analyze and make use of one particular category of behavioral biometrics known as the gait biometric. A comprehensive Ground Reaction Force (GRF)-based Gait Biometrics Recognition framework is proposed and validated by experiments. In addition, an in-depth analysis of existing recognition techniques that are best suited for performing footstep GRF-based person recognition is also proposed, as well as a comparison of feature extractors, normalizers, and classifiers configurations that were never directly compared with one another in any previous GRF recognition research. Finally, a detailed theoretical overview of many existing machine learning techniques is presented, leading to a proposal of two novel data processing techniques developed specifically for the purpose of gait biometric recognition using GRF. This book · introduces novel machine-learning-based temporal normalization techniques · bridges research gaps concerning the effect of footwear and stepping speed on footstep GRF-based person recognition · provides detailed discussions of key research challenges and open research issues in gait biometrics recognition · compares biometrics systems trained and tested with the same footwear against those trained and tested with different footwear
Publisher: Springer
ISBN: 3319290886
Category : Technology & Engineering
Languages : en
Pages : 247
Book Description
This book focuses on how machine learning techniques can be used to analyze and make use of one particular category of behavioral biometrics known as the gait biometric. A comprehensive Ground Reaction Force (GRF)-based Gait Biometrics Recognition framework is proposed and validated by experiments. In addition, an in-depth analysis of existing recognition techniques that are best suited for performing footstep GRF-based person recognition is also proposed, as well as a comparison of feature extractors, normalizers, and classifiers configurations that were never directly compared with one another in any previous GRF recognition research. Finally, a detailed theoretical overview of many existing machine learning techniques is presented, leading to a proposal of two novel data processing techniques developed specifically for the purpose of gait biometric recognition using GRF. This book · introduces novel machine-learning-based temporal normalization techniques · bridges research gaps concerning the effect of footwear and stepping speed on footstep GRF-based person recognition · provides detailed discussions of key research challenges and open research issues in gait biometrics recognition · compares biometrics systems trained and tested with the same footwear against those trained and tested with different footwear
2020 IEEE Pune Section International Conference (PuneCon)
Author: IEEE Staff
Publisher:
ISBN: 9781728196015
Category :
Languages : en
Pages :
Book Description
The scope of the conference includes Domains Tracks in the following key areas but not limited to only these areas The sessions are based on following fields and tracks, 1 Computer Vision and Machine Learning, 2 Electric vehicles, 3 Medical Signal Processing, 4 Assistive Technology, 5 Data Analytics
Publisher:
ISBN: 9781728196015
Category :
Languages : en
Pages :
Book Description
The scope of the conference includes Domains Tracks in the following key areas but not limited to only these areas The sessions are based on following fields and tracks, 1 Computer Vision and Machine Learning, 2 Electric vehicles, 3 Medical Signal Processing, 4 Assistive Technology, 5 Data Analytics
Advanced Machine Learning Technologies and Applications
Author: Aboul Ella Hassanien
Publisher: Springer Nature
ISBN: 9811533830
Category : Technology & Engineering
Languages : en
Pages : 737
Book Description
This book presents the refereed proceedings of the 5th International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2020), held at Manipal University Jaipur, India, on February 13 – 15, 2020, and organized in collaboration with the Scientific Research Group in Egypt (SRGE). The papers cover current research in machine learning, big data, Internet of Things, biomedical engineering, fuzzy logic and security, as well as intelligence swarms and optimization.
Publisher: Springer Nature
ISBN: 9811533830
Category : Technology & Engineering
Languages : en
Pages : 737
Book Description
This book presents the refereed proceedings of the 5th International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2020), held at Manipal University Jaipur, India, on February 13 – 15, 2020, and organized in collaboration with the Scientific Research Group in Egypt (SRGE). The papers cover current research in machine learning, big data, Internet of Things, biomedical engineering, fuzzy logic and security, as well as intelligence swarms and optimization.
Advances in Machine Learning and Computational Intelligence
Author: Srikanta Patnaik
Publisher: Springer Nature
ISBN: 9811552436
Category : Technology & Engineering
Languages : en
Pages : 853
Book Description
This book gathers selected high-quality papers presented at the International Conference on Machine Learning and Computational Intelligence (ICMLCI-2019), jointly organized by Kunming University of Science and Technology and the Interscience Research Network, Bhubaneswar, India, from April 6 to 7, 2019. Addressing virtually all aspects of intelligent systems, soft computing and machine learning, the topics covered include: prediction; data mining; information retrieval; game playing; robotics; learning methods; pattern visualization; automated knowledge acquisition; fuzzy, stochastic and probabilistic computing; neural computing; big data; social networks and applications of soft computing in various areas.
Publisher: Springer Nature
ISBN: 9811552436
Category : Technology & Engineering
Languages : en
Pages : 853
Book Description
This book gathers selected high-quality papers presented at the International Conference on Machine Learning and Computational Intelligence (ICMLCI-2019), jointly organized by Kunming University of Science and Technology and the Interscience Research Network, Bhubaneswar, India, from April 6 to 7, 2019. Addressing virtually all aspects of intelligent systems, soft computing and machine learning, the topics covered include: prediction; data mining; information retrieval; game playing; robotics; learning methods; pattern visualization; automated knowledge acquisition; fuzzy, stochastic and probabilistic computing; neural computing; big data; social networks and applications of soft computing in various areas.
Deep Learning for Biometrics
Author: Bir Bhanu
Publisher: Springer
ISBN: 9783319871288
Category : Computers
Languages : en
Pages : 0
Book Description
This timely text/reference presents a broad overview of advanced deep learning architectures for learning effective feature representation for perceptual and biometrics-related tasks. The text offers a showcase of cutting-edge research on the use of convolutional neural networks (CNN) in face, iris, fingerprint, and vascular biometric systems, in addition to surveillance systems that use soft biometrics. Issues of biometrics security are also examined. Topics and features: addresses the application of deep learning to enhance the performance of biometrics identification across a wide range of different biometrics modalities; revisits deep learning for face biometrics, offering insights from neuroimaging, and provides comparison with popular CNN-based architectures for face recognition; examines deep learning for state-of-the-art latent fingerprint and finger-vein recognition, as well as iris recognition; discusses deep learning for soft biometrics, including approaches for gesture-based identification, gender classification, and tattoo recognition; investigates deep learning for biometrics security, covering biometrics template protection methods, and liveness detection to protect against fake biometrics samples; presents contributions from a global selection of pre-eminent experts in the field representing academia, industry and government laboratories. Providing both an accessible introduction to the practical applications of deep learning in biometrics, and a comprehensive coverage of the entire spectrum of biometric modalities, this authoritative volume will be of great interest to all researchers, practitioners and students involved in related areas of computer vision, pattern recognition and machine learning.
Publisher: Springer
ISBN: 9783319871288
Category : Computers
Languages : en
Pages : 0
Book Description
This timely text/reference presents a broad overview of advanced deep learning architectures for learning effective feature representation for perceptual and biometrics-related tasks. The text offers a showcase of cutting-edge research on the use of convolutional neural networks (CNN) in face, iris, fingerprint, and vascular biometric systems, in addition to surveillance systems that use soft biometrics. Issues of biometrics security are also examined. Topics and features: addresses the application of deep learning to enhance the performance of biometrics identification across a wide range of different biometrics modalities; revisits deep learning for face biometrics, offering insights from neuroimaging, and provides comparison with popular CNN-based architectures for face recognition; examines deep learning for state-of-the-art latent fingerprint and finger-vein recognition, as well as iris recognition; discusses deep learning for soft biometrics, including approaches for gesture-based identification, gender classification, and tattoo recognition; investigates deep learning for biometrics security, covering biometrics template protection methods, and liveness detection to protect against fake biometrics samples; presents contributions from a global selection of pre-eminent experts in the field representing academia, industry and government laboratories. Providing both an accessible introduction to the practical applications of deep learning in biometrics, and a comprehensive coverage of the entire spectrum of biometric modalities, this authoritative volume will be of great interest to all researchers, practitioners and students involved in related areas of computer vision, pattern recognition and machine learning.
Advanced Studies in Biometrics
Author: Massimo Tistarelli
Publisher: Springer
ISBN: 3540286381
Category : Computers
Languages : en
Pages : 166
Book Description
Automatic person authentication, the identification and verification of an individual as such, has increasingly been acknowledged as a significant aspect of various security applications. Various recognition and identification systems have been based on biometrics utilizing biometric features such as fingerprint, face, retina scans, iris patterns, hand geometry, DNA traces, gait, and others. This book originates from an international summer school on biometrics, held in Alghero, Italy, in June 2003. The seven revised tutorial lectures by leading researchers introduce the reader to biometrics-based person authentication, fingerprint recognition, gait recognition, various aspects of face recognition and face detection, topologies for biometric recognition, and hand detection. Also included are the four best selected student papers, all dealing with face recognition.
Publisher: Springer
ISBN: 3540286381
Category : Computers
Languages : en
Pages : 166
Book Description
Automatic person authentication, the identification and verification of an individual as such, has increasingly been acknowledged as a significant aspect of various security applications. Various recognition and identification systems have been based on biometrics utilizing biometric features such as fingerprint, face, retina scans, iris patterns, hand geometry, DNA traces, gait, and others. This book originates from an international summer school on biometrics, held in Alghero, Italy, in June 2003. The seven revised tutorial lectures by leading researchers introduce the reader to biometrics-based person authentication, fingerprint recognition, gait recognition, various aspects of face recognition and face detection, topologies for biometric recognition, and hand detection. Also included are the four best selected student papers, all dealing with face recognition.
AI and Deep Learning in Biometric Security
Author: Gaurav Jaswal
Publisher: CRC Press
ISBN: 1000291669
Category : Technology & Engineering
Languages : en
Pages : 409
Book Description
This book provides an in-depth overview of artificial intelligence and deep learning approaches with case studies to solve problems associated with biometric security such as authentication, indexing, template protection, spoofing attack detection, ROI detection, gender classification etc. This text highlights a showcase of cutting-edge research on the use of convolution neural networks, autoencoders, recurrent convolutional neural networks in face, hand, iris, gait, fingerprint, vein, and medical biometric traits. It also provides a step-by-step guide to understanding deep learning concepts for biometrics authentication approaches and presents an analysis of biometric images under various environmental conditions. This book is sure to catch the attention of scholars, researchers, practitioners, and technology aspirants who are willing to research in the field of AI and biometric security.
Publisher: CRC Press
ISBN: 1000291669
Category : Technology & Engineering
Languages : en
Pages : 409
Book Description
This book provides an in-depth overview of artificial intelligence and deep learning approaches with case studies to solve problems associated with biometric security such as authentication, indexing, template protection, spoofing attack detection, ROI detection, gender classification etc. This text highlights a showcase of cutting-edge research on the use of convolution neural networks, autoencoders, recurrent convolutional neural networks in face, hand, iris, gait, fingerprint, vein, and medical biometric traits. It also provides a step-by-step guide to understanding deep learning concepts for biometrics authentication approaches and presents an analysis of biometric images under various environmental conditions. This book is sure to catch the attention of scholars, researchers, practitioners, and technology aspirants who are willing to research in the field of AI and biometric security.
Deep Learning for Biomedical Applications
Author: Utku Kose
Publisher: CRC Press
ISBN: 1000406423
Category : Technology & Engineering
Languages : en
Pages : 365
Book Description
This book is a detailed reference on biomedical applications using Deep Learning. Because Deep Learning is an important actor shaping the future of Artificial Intelligence, its specific and innovative solutions for both medical and biomedical are very critical. This book provides a recent view of research works on essential, and advanced topics. The book offers detailed information on the application of Deep Learning for solving biomedical problems. It focuses on different types of data (i.e. raw data, signal-time series, medical images) to enable readers to understand the effectiveness and the potential. It includes topics such as disease diagnosis, image processing perspectives, and even genomics. It takes the reader through different sides of Deep Learning oriented solutions. The specific and innovative solutions covered in this book for both medical and biomedical applications are critical to scientists, researchers, practitioners, professionals, and educations who are working in the context of the topics.
Publisher: CRC Press
ISBN: 1000406423
Category : Technology & Engineering
Languages : en
Pages : 365
Book Description
This book is a detailed reference on biomedical applications using Deep Learning. Because Deep Learning is an important actor shaping the future of Artificial Intelligence, its specific and innovative solutions for both medical and biomedical are very critical. This book provides a recent view of research works on essential, and advanced topics. The book offers detailed information on the application of Deep Learning for solving biomedical problems. It focuses on different types of data (i.e. raw data, signal-time series, medical images) to enable readers to understand the effectiveness and the potential. It includes topics such as disease diagnosis, image processing perspectives, and even genomics. It takes the reader through different sides of Deep Learning oriented solutions. The specific and innovative solutions covered in this book for both medical and biomedical applications are critical to scientists, researchers, practitioners, professionals, and educations who are working in the context of the topics.
Human Recognition in Unconstrained Environments
Author: Maria De Marsico
Publisher: Academic Press
ISBN: 0081007124
Category : Computers
Languages : en
Pages : 250
Book Description
Human Recognition in Unconstrained Environments provides a unique picture of the complete ‘in-the-wild’ biometric recognition processing chain; from data acquisition through to detection, segmentation, encoding, and matching reactions against security incidents. Coverage includes: Data hardware architecture fundamentals Background subtraction of humans in outdoor scenes Camera synchronization Biometric traits: Real-time detection and data segmentation Biometric traits: Feature encoding / matching Fusion at different levels Reaction against security incidents Ethical issues in non-cooperative biometric recognition in public spaces With this book readers will learn how to: Use computer vision, pattern recognition and machine learning methods for biometric recognition in real-world, real-time settings, especially those related to forensics and security Choose the most suited biometric traits and recognition methods for uncontrolled settings Evaluate the performance of a biometric system on real world data Presents a complete picture of the biometric recognition processing chain, ranging from data acquisition to the reaction procedures against security incidents Provides specific requirements and issues behind each typical phase of the development of a robust biometric recognition system Includes a contextualization of the ethical/privacy issues behind the development of a covert recognition system which can be used for forensics and security activities
Publisher: Academic Press
ISBN: 0081007124
Category : Computers
Languages : en
Pages : 250
Book Description
Human Recognition in Unconstrained Environments provides a unique picture of the complete ‘in-the-wild’ biometric recognition processing chain; from data acquisition through to detection, segmentation, encoding, and matching reactions against security incidents. Coverage includes: Data hardware architecture fundamentals Background subtraction of humans in outdoor scenes Camera synchronization Biometric traits: Real-time detection and data segmentation Biometric traits: Feature encoding / matching Fusion at different levels Reaction against security incidents Ethical issues in non-cooperative biometric recognition in public spaces With this book readers will learn how to: Use computer vision, pattern recognition and machine learning methods for biometric recognition in real-world, real-time settings, especially those related to forensics and security Choose the most suited biometric traits and recognition methods for uncontrolled settings Evaluate the performance of a biometric system on real world data Presents a complete picture of the biometric recognition processing chain, ranging from data acquisition to the reaction procedures against security incidents Provides specific requirements and issues behind each typical phase of the development of a robust biometric recognition system Includes a contextualization of the ethical/privacy issues behind the development of a covert recognition system which can be used for forensics and security activities
Machine Learning and Biometrics
Author: Jucheng Yang
Publisher: BoD – Books on Demand
ISBN: 1789235901
Category : Computers
Languages : en
Pages : 148
Book Description
We are entering the era of big data, and machine learning can be used to analyze this deluge of data automatically. Machine learning has been used to solve many interesting and often difficult real-world problems, and the biometrics is one of the leading applications of machine learning. This book introduces some new techniques on biometrics and machine learning, and new proposals of using machine learning techniques for biometrics as well. This book consists of two parts: "Biometrics" and "Machine Learning for Biometrics." Parts I and II contain four and three chapters, respectively. The book is reviewed by editors: Prof. Jucheng Yang, Prof. Dong Sun Park, Prof. Sook Yoon, Dr. Yarui Chen, and Dr. Chuanlei Zhang.
Publisher: BoD – Books on Demand
ISBN: 1789235901
Category : Computers
Languages : en
Pages : 148
Book Description
We are entering the era of big data, and machine learning can be used to analyze this deluge of data automatically. Machine learning has been used to solve many interesting and often difficult real-world problems, and the biometrics is one of the leading applications of machine learning. This book introduces some new techniques on biometrics and machine learning, and new proposals of using machine learning techniques for biometrics as well. This book consists of two parts: "Biometrics" and "Machine Learning for Biometrics." Parts I and II contain four and three chapters, respectively. The book is reviewed by editors: Prof. Jucheng Yang, Prof. Dong Sun Park, Prof. Sook Yoon, Dr. Yarui Chen, and Dr. Chuanlei Zhang.