Author: Dattaraj Rao
Publisher: John Wiley & Sons
ISBN: 1119564832
Category : Computers
Languages : en
Pages : 320
Book Description
Build a Keras model to scale and deploy on a Kubernetes cluster We have seen an exponential growth in the use of Artificial Intelligence (AI) over last few years. AI is becoming the new electricity and is touching every industry from retail to manufacturing to healthcare to entertainment. Within AI, were seeing a particular growth in Machine Learning (ML) and Deep Learning (DL) applications. ML is all about learning relationships from labeled (Supervised) or unlabeled data (Unsupervised). DL has many layers of learning and can extract patterns from unstructured data like images, video, audio, etc. em style="box-sizing: border-box;"Keras to Kubernetes: The Journey of a Machine Learning Model to Production takes you through real-world examples of building DL models in Keras for recognizing product logos in images and extracting sentiment from text. You will then take that trained model and package it as a web application container before learning how to deploy this model at scale on a Kubernetes cluster. You will understand the different practical steps involved in real-world ML implementations which go beyond the algorithms. Find hands-on learning examples Learn to uses Keras and Kubernetes to deploy Machine Learning models Discover new ways to collect and manage your image and text data with Machine Learning Reuse examples as-is to deploy your models Understand the ML model development lifecycle and deployment to production If youre ready to learn about one of the most popular DL frameworks and build production applications with it, youve come to the right place!
Keras to Kubernetes
Author: Dattaraj Rao
Publisher: John Wiley & Sons
ISBN: 1119564832
Category : Computers
Languages : en
Pages : 320
Book Description
Build a Keras model to scale and deploy on a Kubernetes cluster We have seen an exponential growth in the use of Artificial Intelligence (AI) over last few years. AI is becoming the new electricity and is touching every industry from retail to manufacturing to healthcare to entertainment. Within AI, were seeing a particular growth in Machine Learning (ML) and Deep Learning (DL) applications. ML is all about learning relationships from labeled (Supervised) or unlabeled data (Unsupervised). DL has many layers of learning and can extract patterns from unstructured data like images, video, audio, etc. em style="box-sizing: border-box;"Keras to Kubernetes: The Journey of a Machine Learning Model to Production takes you through real-world examples of building DL models in Keras for recognizing product logos in images and extracting sentiment from text. You will then take that trained model and package it as a web application container before learning how to deploy this model at scale on a Kubernetes cluster. You will understand the different practical steps involved in real-world ML implementations which go beyond the algorithms. Find hands-on learning examples Learn to uses Keras and Kubernetes to deploy Machine Learning models Discover new ways to collect and manage your image and text data with Machine Learning Reuse examples as-is to deploy your models Understand the ML model development lifecycle and deployment to production If youre ready to learn about one of the most popular DL frameworks and build production applications with it, youve come to the right place!
Publisher: John Wiley & Sons
ISBN: 1119564832
Category : Computers
Languages : en
Pages : 320
Book Description
Build a Keras model to scale and deploy on a Kubernetes cluster We have seen an exponential growth in the use of Artificial Intelligence (AI) over last few years. AI is becoming the new electricity and is touching every industry from retail to manufacturing to healthcare to entertainment. Within AI, were seeing a particular growth in Machine Learning (ML) and Deep Learning (DL) applications. ML is all about learning relationships from labeled (Supervised) or unlabeled data (Unsupervised). DL has many layers of learning and can extract patterns from unstructured data like images, video, audio, etc. em style="box-sizing: border-box;"Keras to Kubernetes: The Journey of a Machine Learning Model to Production takes you through real-world examples of building DL models in Keras for recognizing product logos in images and extracting sentiment from text. You will then take that trained model and package it as a web application container before learning how to deploy this model at scale on a Kubernetes cluster. You will understand the different practical steps involved in real-world ML implementations which go beyond the algorithms. Find hands-on learning examples Learn to uses Keras and Kubernetes to deploy Machine Learning models Discover new ways to collect and manage your image and text data with Machine Learning Reuse examples as-is to deploy your models Understand the ML model development lifecycle and deployment to production If youre ready to learn about one of the most popular DL frameworks and build production applications with it, youve come to the right place!
Data Science in Production
Author: Ben Weber
Publisher:
ISBN: 9781652064633
Category :
Languages : en
Pages : 234
Book Description
Putting predictive models into production is one of the most direct ways that data scientists can add value to an organization. By learning how to build and deploy scalable model pipelines, data scientists can own more of the model production process and more rapidly deliver data products. This book provides a hands-on approach to scaling up Python code to work in distributed environments in order to build robust pipelines. Readers will learn how to set up machine learning models as web endpoints, serverless functions, and streaming pipelines using multiple cloud environments. It is intended for analytics practitioners with hands-on experience with Python libraries such as Pandas and scikit-learn, and will focus on scaling up prototype models to production. From startups to trillion dollar companies, data science is playing an important role in helping organizations maximize the value of their data. This book helps data scientists to level up their careers by taking ownership of data products with applied examples that demonstrate how to: Translate models developed on a laptop to scalable deployments in the cloud Develop end-to-end systems that automate data science workflows Own a data product from conception to production The accompanying Jupyter notebooks provide examples of scalable pipelines across multiple cloud environments, tools, and libraries (github.com/bgweber/DS_Production). Book Contents Here are the topics covered by Data Science in Production: Chapter 1: Introduction - This chapter will motivate the use of Python and discuss the discipline of applied data science, present the data sets, models, and cloud environments used throughout the book, and provide an overview of automated feature engineering. Chapter 2: Models as Web Endpoints - This chapter shows how to use web endpoints for consuming data and hosting machine learning models as endpoints using the Flask and Gunicorn libraries. We'll start with scikit-learn models and also set up a deep learning endpoint with Keras. Chapter 3: Models as Serverless Functions - This chapter will build upon the previous chapter and show how to set up model endpoints as serverless functions using AWS Lambda and GCP Cloud Functions. Chapter 4: Containers for Reproducible Models - This chapter will show how to use containers for deploying models with Docker. We'll also explore scaling up with ECS and Kubernetes, and building web applications with Plotly Dash. Chapter 5: Workflow Tools for Model Pipelines - This chapter focuses on scheduling automated workflows using Apache Airflow. We'll set up a model that pulls data from BigQuery, applies a model, and saves the results. Chapter 6: PySpark for Batch Modeling - This chapter will introduce readers to PySpark using the community edition of Databricks. We'll build a batch model pipeline that pulls data from a data lake, generates features, applies a model, and stores the results to a No SQL database. Chapter 7: Cloud Dataflow for Batch Modeling - This chapter will introduce the core components of Cloud Dataflow and implement a batch model pipeline for reading data from BigQuery, applying an ML model, and saving the results to Cloud Datastore. Chapter 8: Streaming Model Workflows - This chapter will introduce readers to Kafka and PubSub for streaming messages in a cloud environment. After working through this material, readers will learn how to use these message brokers to create streaming model pipelines with PySpark and Dataflow that provide near real-time predictions. Excerpts of these chapters are available on Medium (@bgweber), and a book sample is available on Leanpub.
Publisher:
ISBN: 9781652064633
Category :
Languages : en
Pages : 234
Book Description
Putting predictive models into production is one of the most direct ways that data scientists can add value to an organization. By learning how to build and deploy scalable model pipelines, data scientists can own more of the model production process and more rapidly deliver data products. This book provides a hands-on approach to scaling up Python code to work in distributed environments in order to build robust pipelines. Readers will learn how to set up machine learning models as web endpoints, serverless functions, and streaming pipelines using multiple cloud environments. It is intended for analytics practitioners with hands-on experience with Python libraries such as Pandas and scikit-learn, and will focus on scaling up prototype models to production. From startups to trillion dollar companies, data science is playing an important role in helping organizations maximize the value of their data. This book helps data scientists to level up their careers by taking ownership of data products with applied examples that demonstrate how to: Translate models developed on a laptop to scalable deployments in the cloud Develop end-to-end systems that automate data science workflows Own a data product from conception to production The accompanying Jupyter notebooks provide examples of scalable pipelines across multiple cloud environments, tools, and libraries (github.com/bgweber/DS_Production). Book Contents Here are the topics covered by Data Science in Production: Chapter 1: Introduction - This chapter will motivate the use of Python and discuss the discipline of applied data science, present the data sets, models, and cloud environments used throughout the book, and provide an overview of automated feature engineering. Chapter 2: Models as Web Endpoints - This chapter shows how to use web endpoints for consuming data and hosting machine learning models as endpoints using the Flask and Gunicorn libraries. We'll start with scikit-learn models and also set up a deep learning endpoint with Keras. Chapter 3: Models as Serverless Functions - This chapter will build upon the previous chapter and show how to set up model endpoints as serverless functions using AWS Lambda and GCP Cloud Functions. Chapter 4: Containers for Reproducible Models - This chapter will show how to use containers for deploying models with Docker. We'll also explore scaling up with ECS and Kubernetes, and building web applications with Plotly Dash. Chapter 5: Workflow Tools for Model Pipelines - This chapter focuses on scheduling automated workflows using Apache Airflow. We'll set up a model that pulls data from BigQuery, applies a model, and saves the results. Chapter 6: PySpark for Batch Modeling - This chapter will introduce readers to PySpark using the community edition of Databricks. We'll build a batch model pipeline that pulls data from a data lake, generates features, applies a model, and stores the results to a No SQL database. Chapter 7: Cloud Dataflow for Batch Modeling - This chapter will introduce the core components of Cloud Dataflow and implement a batch model pipeline for reading data from BigQuery, applying an ML model, and saving the results to Cloud Datastore. Chapter 8: Streaming Model Workflows - This chapter will introduce readers to Kafka and PubSub for streaming messages in a cloud environment. After working through this material, readers will learn how to use these message brokers to create streaming model pipelines with PySpark and Dataflow that provide near real-time predictions. Excerpts of these chapters are available on Medium (@bgweber), and a book sample is available on Leanpub.
Kubeflow for Machine Learning
Author: Trevor Grant
Publisher: "O'Reilly Media, Inc."
ISBN: 1492050075
Category : Computers
Languages : en
Pages : 264
Book Description
If you're training a machine learning model but aren't sure how to put it into production, this book will get you there. Kubeflow provides a collection of cloud native tools for different stages of a model's lifecycle, from data exploration, feature preparation, and model training to model serving. This guide helps data scientists build production-grade machine learning implementations with Kubeflow and shows data engineers how to make models scalable and reliable. Using examples throughout the book, authors Holden Karau, Trevor Grant, Ilan Filonenko, Richard Liu, and Boris Lublinsky explain how to use Kubeflow to train and serve your machine learning models on top of Kubernetes in the cloud or in a development environment on-premises. Understand Kubeflow's design, core components, and the problems it solves Understand the differences between Kubeflow on different cluster types Train models using Kubeflow with popular tools including Scikit-learn, TensorFlow, and Apache Spark Keep your model up to date with Kubeflow Pipelines Understand how to capture model training metadata Explore how to extend Kubeflow with additional open source tools Use hyperparameter tuning for training Learn how to serve your model in production
Publisher: "O'Reilly Media, Inc."
ISBN: 1492050075
Category : Computers
Languages : en
Pages : 264
Book Description
If you're training a machine learning model but aren't sure how to put it into production, this book will get you there. Kubeflow provides a collection of cloud native tools for different stages of a model's lifecycle, from data exploration, feature preparation, and model training to model serving. This guide helps data scientists build production-grade machine learning implementations with Kubeflow and shows data engineers how to make models scalable and reliable. Using examples throughout the book, authors Holden Karau, Trevor Grant, Ilan Filonenko, Richard Liu, and Boris Lublinsky explain how to use Kubeflow to train and serve your machine learning models on top of Kubernetes in the cloud or in a development environment on-premises. Understand Kubeflow's design, core components, and the problems it solves Understand the differences between Kubeflow on different cluster types Train models using Kubeflow with popular tools including Scikit-learn, TensorFlow, and Apache Spark Keep your model up to date with Kubeflow Pipelines Understand how to capture model training metadata Explore how to extend Kubeflow with additional open source tools Use hyperparameter tuning for training Learn how to serve your model in production
Advanced Platform Development with Kubernetes
Author: Craig Johnston
Publisher: Apress
ISBN: 9781484256107
Category : Computers
Languages : en
Pages : 0
Book Description
Leverage Kubernetes for the rapid adoption of emerging technologies. Kubernetes is the future of enterprise platform development and has become the most popular, and often considered the most robust, container orchestration system available today. This book focuses on platforming technologies that power the Internet of Things, Blockchain, Machine Learning, and the many layers of data and application management supporting them. Advanced Platform Development with Kubernetes takes you through the process of building platforms with these in-demand capabilities. You'll progress through the development of Serverless, CICD integration, data processing pipelines, event queues, distributed query engines, modern data warehouses, data lakes, distributed object storage, indexing and analytics, data routing and transformation, query engines, and data science/machine learning environments. You’ll also see how to implement and tie together numerous essential and trending technologies including: Kafka, NiFi, Airflow, Hive, Keycloak, Cassandra, MySQL, Zookeeper, Mosquitto, Elasticsearch, Logstash, Kibana, Presto, Mino, OpenFaaS, and Ethereum. The book uses Golang and Python to demonstrate the development integration of custom container and Serverless functions, including interaction with the Kubernetes API. The exercises throughout teach Kubernetes through the lens of platform development, expressing the power and flexibility of Kubernetes with clear and pragmatic examples. Discover why Kubernetes is an excellent choice for any individual or organization looking to embark on developing a successful data and application platform. What You'll Learn Configure and install Kubernetes and k3s on vendor-neutral platforms, including generic virtual machines and bare metal Implement an integrated development toolchain for continuous integration and deployment Use data pipelines with MQTT, NiFi, Logstash, Kafka and Elasticsearch Install a serverless platform with OpenFaaS Explore blockchain network capabilities with Ethereum Support a multi-tenant data science platform and web IDE with JupyterHub, MLflow and Seldon Core Build a hybrid cluster, securely bridging on-premise and cloud-based Kubernetes nodes Who This Book Is For System and software architects, full-stack developers, programmers, and DevOps engineers with some experience building and using containers. This book also targets readers who have started with Kubernetes and need to progress from a basic understanding of the technology and "Hello World" example to more productive, career-building projects.
Publisher: Apress
ISBN: 9781484256107
Category : Computers
Languages : en
Pages : 0
Book Description
Leverage Kubernetes for the rapid adoption of emerging technologies. Kubernetes is the future of enterprise platform development and has become the most popular, and often considered the most robust, container orchestration system available today. This book focuses on platforming technologies that power the Internet of Things, Blockchain, Machine Learning, and the many layers of data and application management supporting them. Advanced Platform Development with Kubernetes takes you through the process of building platforms with these in-demand capabilities. You'll progress through the development of Serverless, CICD integration, data processing pipelines, event queues, distributed query engines, modern data warehouses, data lakes, distributed object storage, indexing and analytics, data routing and transformation, query engines, and data science/machine learning environments. You’ll also see how to implement and tie together numerous essential and trending technologies including: Kafka, NiFi, Airflow, Hive, Keycloak, Cassandra, MySQL, Zookeeper, Mosquitto, Elasticsearch, Logstash, Kibana, Presto, Mino, OpenFaaS, and Ethereum. The book uses Golang and Python to demonstrate the development integration of custom container and Serverless functions, including interaction with the Kubernetes API. The exercises throughout teach Kubernetes through the lens of platform development, expressing the power and flexibility of Kubernetes with clear and pragmatic examples. Discover why Kubernetes is an excellent choice for any individual or organization looking to embark on developing a successful data and application platform. What You'll Learn Configure and install Kubernetes and k3s on vendor-neutral platforms, including generic virtual machines and bare metal Implement an integrated development toolchain for continuous integration and deployment Use data pipelines with MQTT, NiFi, Logstash, Kafka and Elasticsearch Install a serverless platform with OpenFaaS Explore blockchain network capabilities with Ethereum Support a multi-tenant data science platform and web IDE with JupyterHub, MLflow and Seldon Core Build a hybrid cluster, securely bridging on-premise and cloud-based Kubernetes nodes Who This Book Is For System and software architects, full-stack developers, programmers, and DevOps engineers with some experience building and using containers. This book also targets readers who have started with Kubernetes and need to progress from a basic understanding of the technology and "Hello World" example to more productive, career-building projects.
Kubeflow Operations Guide
Author: Josh Patterson
Publisher: "O'Reilly Media, Inc."
ISBN: 1492053228
Category : Computers
Languages : en
Pages : 331
Book Description
Building models is a small part of the story when it comes to deploying machine learning applications. The entire process involves developing, orchestrating, deploying, and running scalable and portable machine learning workloads--a process Kubeflow makes much easier. This practical book shows data scientists, data engineers, and platform architects how to plan and execute a Kubeflow project to make their Kubernetes workflows portable and scalable. Authors Josh Patterson, Michael Katzenellenbogen, and Austin Harris demonstrate how this open source platform orchestrates workflows by managing machine learning pipelines. You'll learn how to plan and execute a Kubeflow platform that can support workflows from on-premises to cloud providers including Google, Amazon, and Microsoft. Dive into Kubeflow architecture and learn best practices for using the platform Understand the process of planning your Kubeflow deployment Install Kubeflow on an existing on-premises Kubernetes cluster Deploy Kubeflow on Google Cloud Platform step-by-step from the command line Use the managed Amazon Elastic Kubernetes Service (EKS) to deploy Kubeflow on AWS Deploy and manage Kubeflow across a network of Azure cloud data centers around the world Use KFServing to develop and deploy machine learning models
Publisher: "O'Reilly Media, Inc."
ISBN: 1492053228
Category : Computers
Languages : en
Pages : 331
Book Description
Building models is a small part of the story when it comes to deploying machine learning applications. The entire process involves developing, orchestrating, deploying, and running scalable and portable machine learning workloads--a process Kubeflow makes much easier. This practical book shows data scientists, data engineers, and platform architects how to plan and execute a Kubeflow project to make their Kubernetes workflows portable and scalable. Authors Josh Patterson, Michael Katzenellenbogen, and Austin Harris demonstrate how this open source platform orchestrates workflows by managing machine learning pipelines. You'll learn how to plan and execute a Kubeflow platform that can support workflows from on-premises to cloud providers including Google, Amazon, and Microsoft. Dive into Kubeflow architecture and learn best practices for using the platform Understand the process of planning your Kubeflow deployment Install Kubeflow on an existing on-premises Kubernetes cluster Deploy Kubeflow on Google Cloud Platform step-by-step from the command line Use the managed Amazon Elastic Kubernetes Service (EKS) to deploy Kubeflow on AWS Deploy and manage Kubeflow across a network of Azure cloud data centers around the world Use KFServing to develop and deploy machine learning models
Deploy Machine Learning Models to Production
Author: Pramod Singh
Publisher: Apress
ISBN: 9781484265451
Category : Computers
Languages : en
Pages : 150
Book Description
Build and deploy machine learning and deep learning models in production with end-to-end examples. This book begins with a focus on the machine learning model deployment process and its related challenges. Next, it covers the process of building and deploying machine learning models using different web frameworks such as Flask and Streamlit. A chapter on Docker follows and covers how to package and containerize machine learning models. The book also illustrates how to build and train machine learning and deep learning models at scale using Kubernetes. The book is a good starting point for people who want to move to the next level of machine learning by taking pre-built models and deploying them into production. It also offers guidance to those who want to move beyond Jupyter notebooks to training models at scale on cloud environments. All the code presented in the book is available in the form of Python scripts for you to try the examples and extend them in interesting ways. What You Will Learn Build, train, and deploy machine learning models at scale using Kubernetes Containerize any kind of machine learning model and run it on any platform using Docker Deploy machine learning and deep learning models using Flask and Streamlit frameworks Who This Book Is For Data engineers, data scientists, analysts, and machine learning and deep learning engineers
Publisher: Apress
ISBN: 9781484265451
Category : Computers
Languages : en
Pages : 150
Book Description
Build and deploy machine learning and deep learning models in production with end-to-end examples. This book begins with a focus on the machine learning model deployment process and its related challenges. Next, it covers the process of building and deploying machine learning models using different web frameworks such as Flask and Streamlit. A chapter on Docker follows and covers how to package and containerize machine learning models. The book also illustrates how to build and train machine learning and deep learning models at scale using Kubernetes. The book is a good starting point for people who want to move to the next level of machine learning by taking pre-built models and deploying them into production. It also offers guidance to those who want to move beyond Jupyter notebooks to training models at scale on cloud environments. All the code presented in the book is available in the form of Python scripts for you to try the examples and extend them in interesting ways. What You Will Learn Build, train, and deploy machine learning models at scale using Kubernetes Containerize any kind of machine learning model and run it on any platform using Docker Deploy machine learning and deep learning models using Flask and Streamlit frameworks Who This Book Is For Data engineers, data scientists, analysts, and machine learning and deep learning engineers
Machine Learning Bookcamp
Author: Alexey Grigorev
Publisher: Simon and Schuster
ISBN: 1617296813
Category : Computers
Languages : en
Pages : 470
Book Description
The only way to learn is to practice! In Machine Learning Bookcamp, you''ll create and deploy Python-based machine learning models for a variety of increasingly challenging projects. Taking you from the basics of machine learning to complex applications such as image and text analysis, each new project builds on what you''ve learned in previous chapters. By the end of the bookcamp, you''ll have built a portfolio of business-relevant machine learning projects that hiring managers will be excited to see. about the technology Machine learning is an analysis technique for predicting trends and relationships based on historical data. As ML has matured as a discipline, an established set of algorithms has emerged for tackling a wide range of analysis tasks in business and research. By practicing the most important algorithms and techniques, you can quickly gain a footing in this important area. Luckily, that''s exactly what you''ll be doing in Machine Learning Bookcamp. about the book In Machine Learning Bookcamp you''ll learn the essentials of machine learning by completing a carefully designed set of real-world projects. Beginning as a novice, you''ll start with the basic concepts of ML before tackling your first challenge: creating a car price predictor using linear regression algorithms. You''ll then advance through increasingly difficult projects, developing your skills to build a churn prediction application, a flight delay calculator, an image classifier, and more. When you''re done working through these fun and informative projects, you''ll have a comprehensive machine learning skill set you can apply to practical on-the-job problems. what''s inside Code fundamental ML algorithms from scratch Collect and clean data for training models Use popular Python tools, including NumPy, Pandas, Scikit-Learn, and TensorFlow Apply ML to complex datasets with images and text Deploy ML models to a production-ready environment about the reader For readers with existing programming skills. No previous machine learning experience required. about the author Alexey Grigorev has more than ten years of experience as a software engineer, and has spent the last six years focused on machine learning. Currently, he works as a lead data scientist at the OLX Group, where he deals with content moderation and image models. He is the author of two other books on using Java for data science and TensorFlow for deep learning.
Publisher: Simon and Schuster
ISBN: 1617296813
Category : Computers
Languages : en
Pages : 470
Book Description
The only way to learn is to practice! In Machine Learning Bookcamp, you''ll create and deploy Python-based machine learning models for a variety of increasingly challenging projects. Taking you from the basics of machine learning to complex applications such as image and text analysis, each new project builds on what you''ve learned in previous chapters. By the end of the bookcamp, you''ll have built a portfolio of business-relevant machine learning projects that hiring managers will be excited to see. about the technology Machine learning is an analysis technique for predicting trends and relationships based on historical data. As ML has matured as a discipline, an established set of algorithms has emerged for tackling a wide range of analysis tasks in business and research. By practicing the most important algorithms and techniques, you can quickly gain a footing in this important area. Luckily, that''s exactly what you''ll be doing in Machine Learning Bookcamp. about the book In Machine Learning Bookcamp you''ll learn the essentials of machine learning by completing a carefully designed set of real-world projects. Beginning as a novice, you''ll start with the basic concepts of ML before tackling your first challenge: creating a car price predictor using linear regression algorithms. You''ll then advance through increasingly difficult projects, developing your skills to build a churn prediction application, a flight delay calculator, an image classifier, and more. When you''re done working through these fun and informative projects, you''ll have a comprehensive machine learning skill set you can apply to practical on-the-job problems. what''s inside Code fundamental ML algorithms from scratch Collect and clean data for training models Use popular Python tools, including NumPy, Pandas, Scikit-Learn, and TensorFlow Apply ML to complex datasets with images and text Deploy ML models to a production-ready environment about the reader For readers with existing programming skills. No previous machine learning experience required. about the author Alexey Grigorev has more than ten years of experience as a software engineer, and has spent the last six years focused on machine learning. Currently, he works as a lead data scientist at the OLX Group, where he deals with content moderation and image models. He is the author of two other books on using Java for data science and TensorFlow for deep learning.
Distributed Machine Learning Patterns
Author: Yuan Tang
Publisher: Manning
ISBN: 9781617299025
Category : Computers
Languages : en
Pages : 375
Book Description
Practical patterns for scaling machine learning from your laptop to a distributed cluster. Scaling up models from standalone devices to large distributed clusters is one of the biggest challenges faced by modern machine learning practitioners. Distributed Machine Learning Patterns teaches you how to scale machine learning models from your laptop to large distributed clusters. In Distributed Machine Learning Patterns, you’ll learn how to apply established distributed systems patterns to machine learning projects, and explore new ML-specific patterns as well. Firmly rooted in the real world, this book demonstrates how to apply patterns using examples based in TensorFlow, Kubernetes, Kubeflow, and Argo Workflows. Real-world scenarios, hands-on projects, and clear, practical DevOps techniques let you easily launch, manage, and monitor cloud-native distributed machine learning pipelines. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
Publisher: Manning
ISBN: 9781617299025
Category : Computers
Languages : en
Pages : 375
Book Description
Practical patterns for scaling machine learning from your laptop to a distributed cluster. Scaling up models from standalone devices to large distributed clusters is one of the biggest challenges faced by modern machine learning practitioners. Distributed Machine Learning Patterns teaches you how to scale machine learning models from your laptop to large distributed clusters. In Distributed Machine Learning Patterns, you’ll learn how to apply established distributed systems patterns to machine learning projects, and explore new ML-specific patterns as well. Firmly rooted in the real world, this book demonstrates how to apply patterns using examples based in TensorFlow, Kubernetes, Kubeflow, and Argo Workflows. Real-world scenarios, hands-on projects, and clear, practical DevOps techniques let you easily launch, manage, and monitor cloud-native distributed machine learning pipelines. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
Machine Learning Design Patterns
Author: Valliappa Lakshmanan
Publisher: O'Reilly Media
ISBN: 1098115759
Category : Computers
Languages : en
Pages : 408
Book Description
The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors, three Google engineers, catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice. In this book, you will find detailed explanations of 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the best technique for your situation. You'll learn how to: Identify and mitigate common challenges when training, evaluating, and deploying ML models Represent data for different ML model types, including embeddings, feature crosses, and more Choose the right model type for specific problems Build a robust training loop that uses checkpoints, distribution strategy, and hyperparameter tuning Deploy scalable ML systems that you can retrain and update to reflect new data Interpret model predictions for stakeholders and ensure models are treating users fairly
Publisher: O'Reilly Media
ISBN: 1098115759
Category : Computers
Languages : en
Pages : 408
Book Description
The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors, three Google engineers, catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice. In this book, you will find detailed explanations of 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the best technique for your situation. You'll learn how to: Identify and mitigate common challenges when training, evaluating, and deploying ML models Represent data for different ML model types, including embeddings, feature crosses, and more Choose the right model type for specific problems Build a robust training loop that uses checkpoints, distribution strategy, and hyperparameter tuning Deploy scalable ML systems that you can retrain and update to reflect new data Interpret model predictions for stakeholders and ensure models are treating users fairly
Kubernetes: Up and Running
Author: Kelsey Hightower
Publisher: "O'Reilly Media, Inc."
ISBN: 1491936029
Category : Computers
Languages : en
Pages : 201
Book Description
Legend has it that Google deploys over two billion application containers a week. How’s that possible? Google revealed the secret through a project called Kubernetes, an open source cluster orchestrator (based on its internal Borg system) that radically simplifies the task of building, deploying, and maintaining scalable distributed systems in the cloud. This practical guide shows you how Kubernetes and container technology can help you achieve new levels of velocity, agility, reliability, and efficiency. Authors Kelsey Hightower, Brendan Burns, and Joe Beda—who’ve worked on Kubernetes at Google and other organizatons—explain how this system fits into the lifecycle of a distributed application. You will learn how to use tools and APIs to automate scalable distributed systems, whether it is for online services, machine-learning applications, or a cluster of Raspberry Pi computers. Explore the distributed system challenges that Kubernetes addresses Dive into containerized application development, using containers such as Docker Create and run containers on Kubernetes, using the docker image format and container runtime Explore specialized objects essential for running applications in production Reliably roll out new software versions without downtime or errors Get examples of how to develop and deploy real-world applications in Kubernetes
Publisher: "O'Reilly Media, Inc."
ISBN: 1491936029
Category : Computers
Languages : en
Pages : 201
Book Description
Legend has it that Google deploys over two billion application containers a week. How’s that possible? Google revealed the secret through a project called Kubernetes, an open source cluster orchestrator (based on its internal Borg system) that radically simplifies the task of building, deploying, and maintaining scalable distributed systems in the cloud. This practical guide shows you how Kubernetes and container technology can help you achieve new levels of velocity, agility, reliability, and efficiency. Authors Kelsey Hightower, Brendan Burns, and Joe Beda—who’ve worked on Kubernetes at Google and other organizatons—explain how this system fits into the lifecycle of a distributed application. You will learn how to use tools and APIs to automate scalable distributed systems, whether it is for online services, machine-learning applications, or a cluster of Raspberry Pi computers. Explore the distributed system challenges that Kubernetes addresses Dive into containerized application development, using containers such as Docker Create and run containers on Kubernetes, using the docker image format and container runtime Explore specialized objects essential for running applications in production Reliably roll out new software versions without downtime or errors Get examples of how to develop and deploy real-world applications in Kubernetes