Machine Learning on Geographical Data Using Python

Machine Learning on Geographical Data Using Python PDF Author: Joos Korstanje
Publisher: Apress
ISBN: 9781484282861
Category : Computers
Languages : en
Pages : 0

Get Book Here

Book Description
Get up and running with the basics of geographic information systems (GIS), geospatial analysis, and machine learning on spatial data in Python. This book starts with an introduction to geodata and covers topics such as GIS and common tools, standard formats of geographical data, and an overview of Python tools for geodata. Specifics and difficulties one may encounter when using geographical data are discussed: from coordinate systems and map projections to different geodata formats and types such as points, lines, polygons, and rasters. Analytics operations typically applied to geodata are explained such as clipping, intersecting, buffering, merging, dissolving, and erasing, with implementations in Python. Use cases and examples are included. The book also focuses on applying more advanced machine learning approaches to geographical data and presents interpolation, classification, regression, and clustering via examples and use cases. This book is your go-to resource for machine learning on geodata. It presents the basics of working with spatial data and advanced applications. Examples are presented using code and facilitate learning by application. What You Will Learn Understand the fundamental concepts of working with geodata Work with multiple geographical data types and file formats in Python Create maps in Python Apply machine learning on geographical data Who This Book Is For Readers with a basic understanding of machine learning who wish to extend their skill set to analysis of and machine learning on spatial data while remaining in a common data science Python environment

Machine Learning on Geographical Data Using Python

Machine Learning on Geographical Data Using Python PDF Author: Joos Korstanje
Publisher: Apress
ISBN: 9781484282861
Category : Computers
Languages : en
Pages : 0

Get Book Here

Book Description
Get up and running with the basics of geographic information systems (GIS), geospatial analysis, and machine learning on spatial data in Python. This book starts with an introduction to geodata and covers topics such as GIS and common tools, standard formats of geographical data, and an overview of Python tools for geodata. Specifics and difficulties one may encounter when using geographical data are discussed: from coordinate systems and map projections to different geodata formats and types such as points, lines, polygons, and rasters. Analytics operations typically applied to geodata are explained such as clipping, intersecting, buffering, merging, dissolving, and erasing, with implementations in Python. Use cases and examples are included. The book also focuses on applying more advanced machine learning approaches to geographical data and presents interpolation, classification, regression, and clustering via examples and use cases. This book is your go-to resource for machine learning on geodata. It presents the basics of working with spatial data and advanced applications. Examples are presented using code and facilitate learning by application. What You Will Learn Understand the fundamental concepts of working with geodata Work with multiple geographical data types and file formats in Python Create maps in Python Apply machine learning on geographical data Who This Book Is For Readers with a basic understanding of machine learning who wish to extend their skill set to analysis of and machine learning on spatial data while remaining in a common data science Python environment

Geodemographics, GIS and Neighbourhood Targeting

Geodemographics, GIS and Neighbourhood Targeting PDF Author: Richard Harris
Publisher: John Wiley & Sons
ISBN: 047086415X
Category : Science
Languages : en
Pages : 328

Get Book Here

Book Description
Geodemographic classification is ‘big business’ in the marketing and service sector industries, and in public policy there has also been a resurgence of interest in neighbourhood initiatives and targeting. As an increasing number of professionals realise the potential of geographic analysis for their business or organisation, there exists a timely gap in the market for a focussed book on geodemographics and GIS. Geodemographics: neighbourhood targeting and GIS provides both an introduction to and overview of the methods, theory and classification techniques that provide the foundation of neighbourhood analysis and commercial geodemographic products. Particular focus is given to the presentation and use of neighbourhood classification in GIS. Authored by leading marketing professionals and a prominent academic, this book presents methods, theory and classification techniques in a reader-friendly manner Supported by private and public sector case studies and vignettes The applied ‘how to’ sections will specifically appeal to the intended audience at work in business and service planning Includes information on the recent UK and US Census products and resulting neighbourhood classifications

Ethics, Machine Learning, and Python in Geospatial Analysis

Ethics, Machine Learning, and Python in Geospatial Analysis PDF Author: Galety, Mohammad Gouse
Publisher: IGI Global
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 359

Get Book Here

Book Description
In geospatial analysis, navigating the complexities of data interpretation and analysis presents a formidable challenge. Traditional methods often need to efficiently handle vast volumes of geospatial data while providing insightful and actionable results. Scholars and practitioners grapple with manual or rule-based approaches, hindering progress in understanding and addressing pressing issues such as climate change, urbanization, and resource management. Ethics, Machine Learning, and Python in Geospatial Analysis offers a solution to the challenges faced by leveraging the extensive library support and user-friendly interface of Python and machine learning. The book’s meticulously crafted chapters guide readers through the intricacies of Python programming and its application in geospatial analysis, from fundamental concepts to advanced techniques.

Geoprocessing with Python

Geoprocessing with Python PDF Author: Christine Garrard
Publisher: Simon and Schuster
ISBN: 163835314X
Category : Computers
Languages : en
Pages : 558

Get Book Here

Book Description
Summary Geoprocessing with Python teaches you how to use the Python programming language, along with free and open source tools, to read, write, and process geospatial data. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology This book is about the science of reading, analyzing, and presenting geospatial data programmatically, using Python. Thanks to dozens of open source Python libraries and tools, you can take on professional geoprocessing tasks without investing in expensive proprietary packages like ArcGIS and MapInfo. The book shows you how. About the Book Geoprocessing with Python teaches you how to access available datasets to make maps or perform your own analyses using free tools like the GDAL, NumPy, and matplotlib Python modules. Through lots of hands-on examples, you’ll master core practices like handling multiple vector file formats, editing geometries, applying spatial and attribute filters, working with projections, and performing basic analyses on vector data. The book also covers how to manipulate, resample, and analyze raster data, such as aerial photographs and digital elevation models. What's Inside Geoprocessing from the ground up Read, write, process, and analyze raster data Visualize data with matplotlib Write custom geoprocessing tools Three additional appendixes available online About the Reader To read this book all you need is a basic knowledge of Python or a similar programming language. About the Author Chris Garrard works as a developer for Utah State University and teaches a graduate course on Python programming for GIS. Table of Contents Introduction Python basics Reading and writing vector data Working with different vector file formats Filtering data with OGR Manipulating geometries with OGR Vector analysis with OGR Using spatial reference systems Reading and writing raster data Working with raster data Map algebra with NumPy and SciPy Map classification Visualizing data Appendixes A - Installation B - References C - OGR - online only D - OSR - online only E - GDAL - online only

Python Data Science Handbook

Python Data Science Handbook PDF Author: Jake VanderPlas
Publisher: "O'Reilly Media, Inc."
ISBN: 1491912138
Category : Computers
Languages : en
Pages : 609

Get Book Here

Book Description
For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms

Learning Geospatial Analysis with Python

Learning Geospatial Analysis with Python PDF Author: Joel Lawhead
Publisher: Packt Publishing Ltd
ISBN: 1789957931
Category : Computers
Languages : en
Pages : 447

Get Book Here

Book Description
Learn the core concepts of geospatial data analysis for building actionable and insightful GIS applications Key Features Create GIS solutions using the new features introduced in Python 3.7 Explore a range of GIS tools and libraries such as PostGIS, QGIS, and PROJ Learn to automate geospatial analysis workflows using Python and Jupyter Book DescriptionGeospatial analysis is used in almost every domain you can think of, including defense, farming, and even medicine. With this systematic guide, you'll get started with geographic information system (GIS) and remote sensing analysis using the latest features in Python. This book will take you through GIS techniques, geodatabases, geospatial raster data, and much more using the latest built-in tools and libraries in Python 3.7. You'll learn everything you need to know about using software packages or APIs and generic algorithms that can be used for different situations. Furthermore, you'll learn how to apply simple Python GIS geospatial processes to a variety of problems, and work with remote sensing data. By the end of the book, you'll be able to build a generic corporate system, which can be implemented in any organization to manage customer support requests and field support personnel.What you will learn Automate geospatial analysis workflows using Python Code the simplest possible GIS in just 60 lines of Python Create thematic maps with Python tools such as PyShp, OGR, and the Python Imaging Library Understand the different formats that geospatial data comes in Produce elevation contours using Python tools Create flood inundation models Apply geospatial analysis to real-time data tracking and storm chasing Who this book is forThis book is for Python developers, researchers, or analysts who want to perform geospatial modeling and GIS analysis with Python. Basic knowledge of digital mapping and analysis using Python or other scripting languages will be helpful.

Geographic Data Science with Python

Geographic Data Science with Python PDF Author: Sergio Rey
Publisher: CRC Press
ISBN: 1000885275
Category : Science
Languages : en
Pages : 422

Get Book Here

Book Description
This book provides the tools, the methods, and the theory to meet the challenges of contemporary data science applied to geographic problems and data. In the new world of pervasive, large, frequent, and rapid data, there are new opportunities to understand and analyze the role of geography in everyday life. Geographic Data Science with Python introduces a new way of thinking about analysis, by using geographical and computational reasoning, it shows the reader how to unlock new insights hidden within data. Key Features: ● Showcases the excellent data science environment in Python. ● Provides examples for readers to replicate, adapt, extend, and improve. ● Covers the crucial knowledge needed by geographic data scientists. It presents concepts in a far more geographic way than competing textbooks, covering spatial data, mapping, and spatial statistics whilst covering concepts, such as clusters and outliers, as geographic concepts. Intended for data scientists, GIScientists, and geographers, the material provided in this book is of interest due to the manner in which it presents geospatial data, methods, tools, and practices in this new field.

Python Geospatial Development Essentials

Python Geospatial Development Essentials PDF Author: Karim Bahgat
Publisher: Packt Publishing Ltd
ISBN: 1782174419
Category : Computers
Languages : en
Pages : 192

Get Book Here

Book Description
This book provides you with the resources to successfully develop your own GIS application in Python. The book begins by walking you through the loading and saving of data structures before you start to build the look and feel of your application and create its interactive map window. You'll then move on to managing, editing, and analyzing spatial data from within the application and finish with instructions for packaging the application for distribution. By the end of the book, you should be able to use your GIS application as a template for further development, with the potential to expand and customize it to suit your needs.

Geocomputation with R

Geocomputation with R PDF Author: Robin Lovelace
Publisher: CRC Press
ISBN: 1351396900
Category : Mathematics
Languages : en
Pages : 354

Get Book Here

Book Description
Geocomputation with R is for people who want to analyze, visualize and model geographic data with open source software. It is based on R, a statistical programming language that has powerful data processing, visualization, and geospatial capabilities. The book equips you with the knowledge and skills to tackle a wide range of issues manifested in geographic data, including those with scientific, societal, and environmental implications. This book will interest people from many backgrounds, especially Geographic Information Systems (GIS) users interested in applying their domain-specific knowledge in a powerful open source language for data science, and R users interested in extending their skills to handle spatial data. The book is divided into three parts: (I) Foundations, aimed at getting you up-to-speed with geographic data in R, (II) extensions, which covers advanced techniques, and (III) applications to real-world problems. The chapters cover progressively more advanced topics, with early chapters providing strong foundations on which the later chapters build. Part I describes the nature of spatial datasets in R and methods for manipulating them. It also covers geographic data import/export and transforming coordinate reference systems. Part II represents methods that build on these foundations. It covers advanced map making (including web mapping), "bridges" to GIS, sharing reproducible code, and how to do cross-validation in the presence of spatial autocorrelation. Part III applies the knowledge gained to tackle real-world problems, including representing and modeling transport systems, finding optimal locations for stores or services, and ecological modeling. Exercises at the end of each chapter give you the skills needed to tackle a range of geospatial problems. Solutions for each chapter and supplementary materials providing extended examples are available at https://geocompr.github.io/geocompkg/articles/.

Python Geospatial Development

Python Geospatial Development PDF Author: Erik Westra
Publisher:
ISBN: 9781782161523
Category : Computers
Languages : en
Pages : 0

Get Book Here

Book Description
This is a tutorial style book that will teach usage of Python tools for GIS using simple practical examples and then show you how to build a complete mapping application from scratch. The book assumes basic knowledge of Python. No knowledge of Open Source GIS is required.Experienced Python developers who want to learn about geospatial concepts, work with geospatial data, solve spatial problems, and build map-based applications.This book will be useful those who want to get up to speed with Open Source GIS in order to build GIS applications or integrate Geo-Spatial features into their existing applications.