Machine Learning, Meta-Reasoning and Logics

Machine Learning, Meta-Reasoning and Logics PDF Author: Pavel B. Brazdil
Publisher: Springer Science & Business Media
ISBN: 1461316413
Category : Computers
Languages : en
Pages : 339

Get Book Here

Book Description
This book contains a selection of papers presented at the International Workshop Machine Learning, Meta-Reasoning and Logics held in Hotel de Mar in Sesimbra, Portugal, 15-17 February 1988. All the papers were edited afterwards. The Workshop encompassed several fields of Artificial Intelligence: Machine Learning, Belief Revision, Meta-Reasoning and Logics. The objective of this Workshop was not only to address the common issues in these areas, but also to examine how to elaborate cognitive architectures for systems capable of learning from experience, revising their beliefs and reasoning about what they know. Acknowledgements The editing of this book has been supported by COST-13 Project Machine Learning and Knowledge Acquisition funded by the Commission o/the European Communities which has covered a substantial part of the costs. Other sponsors who have supported this work were Junta Nacional de lnvestiga~ao Cientlfica (JNICT), lnstituto Nacional de lnvestiga~ao Cientlfica (INIC), Funda~ao Calouste Gulbenkian. I wish to express my gratitude to all these institutions. Finally my special thanks to Paula Pereira and AnaN ogueira for their help in preparing this volume. This work included retyping all the texts and preparing the camera-ready copy. Introduction 1 1. Meta-Reasoning and Machine Learning The first chapter is concerned with the role meta-reasoning plays in intelligent systems capable of learning. As we can see from the papers that appear in this chapter, there are basically two different schools of thought.

Machine Learning, Meta-Reasoning and Logics

Machine Learning, Meta-Reasoning and Logics PDF Author: Pavel B. Brazdil
Publisher: Springer Science & Business Media
ISBN: 1461316413
Category : Computers
Languages : en
Pages : 339

Get Book Here

Book Description
This book contains a selection of papers presented at the International Workshop Machine Learning, Meta-Reasoning and Logics held in Hotel de Mar in Sesimbra, Portugal, 15-17 February 1988. All the papers were edited afterwards. The Workshop encompassed several fields of Artificial Intelligence: Machine Learning, Belief Revision, Meta-Reasoning and Logics. The objective of this Workshop was not only to address the common issues in these areas, but also to examine how to elaborate cognitive architectures for systems capable of learning from experience, revising their beliefs and reasoning about what they know. Acknowledgements The editing of this book has been supported by COST-13 Project Machine Learning and Knowledge Acquisition funded by the Commission o/the European Communities which has covered a substantial part of the costs. Other sponsors who have supported this work were Junta Nacional de lnvestiga~ao Cientlfica (JNICT), lnstituto Nacional de lnvestiga~ao Cientlfica (INIC), Funda~ao Calouste Gulbenkian. I wish to express my gratitude to all these institutions. Finally my special thanks to Paula Pereira and AnaN ogueira for their help in preparing this volume. This work included retyping all the texts and preparing the camera-ready copy. Introduction 1 1. Meta-Reasoning and Machine Learning The first chapter is concerned with the role meta-reasoning plays in intelligent systems capable of learning. As we can see from the papers that appear in this chapter, there are basically two different schools of thought.

Machine Learning

Machine Learning PDF Author: Ryszard S. Michalski
Publisher: Morgan Kaufmann
ISBN: 9781558602519
Category : Computers
Languages : en
Pages : 798

Get Book Here

Book Description
Multistrategy learning is one of the newest and most promising research directions in the development of machine learning systems. The objectives of research in this area are to study trade-offs between different learning strategies and to develop learning systems that employ multiple types of inference or computational paradigms in a learning process. Multistrategy systems offer significant advantages over monostrategy systems. They are more flexible in the type of input they can learn from and the type of knowledge they can acquire. As a consequence, multistrategy systems have the potential to be applicable to a wide range of practical problems. This volume is the first book in this fast growing field. It contains a selection of contributions by leading researchers specializing in this area. See below for earlier volumes in the series.

Machine Learning

Machine Learning PDF Author: Yves Kodratoff
Publisher: Elsevier
ISBN: 0080510558
Category : Computers
Languages : en
Pages : 836

Get Book Here

Book Description
Machine Learning: An Artificial Intelligence Approach, Volume III presents a sample of machine learning research representative of the period between 1986 and 1989. The book is organized into six parts. Part One introduces some general issues in the field of machine learning. Part Two presents some new developments in the area of empirical learning methods, such as flexible learning concepts, the Protos learning apprentice system, and the WITT system, which implements a form of conceptual clustering. Part Three gives an account of various analytical learning methods and how analytic learning can be applied to various specific problems. Part Four describes efforts to integrate different learning strategies. These include the UNIMEM system, which empirically discovers similarities among examples; and the DISCIPLE multistrategy system, which is capable of learning with imperfect background knowledge. Part Five provides an overview of research in the area of subsymbolic learning methods. Part Six presents two types of formal approaches to machine learning. The first is an improvement over Mitchell's version space method; the second technique deals with the learning problem faced by a robot in an unfamiliar, deterministic, finite-state environment.

Machine Learning - EWSL-91

Machine Learning - EWSL-91 PDF Author: Yves Kodratoff
Publisher: Springer Science & Business Media
ISBN: 9783540538165
Category : Computers
Languages : en
Pages : 554

Get Book Here

Book Description
In this book contemporary knowledge of superconductivity is set against its historical background. First, the highlights of superconductivity research in the twentieth century are reviewed. Further contributions then describe the basic phenomena resulting from the macroscopic quantum state of superconductivity (such as zero resistivity, the Meissner-Ochsenfeld effect, and flux quantization) and review possible mechaniscs, including the classical BCS theory and the more recent alternative theories. The main categories of superconductors - elements, intermetallic phases, chalcogenides, oxides and organic compounds - are described. Common features and differences in their structure and electronic properties are pointed out. This broad overview of superconductivity is completed by a discussion of properties related to the coherence length. Newcomers to the field who seek an overall picture of research in superconductivity, and of the cross-links between its branches, will find this volume especially useful.

Machine Learning Proceedings 1989

Machine Learning Proceedings 1989 PDF Author: Alberto Maria Segre
Publisher: Morgan Kaufmann
ISBN: 1483297403
Category : Computers
Languages : en
Pages : 521

Get Book Here

Book Description
Machine Learning Proceedings 1989

Inductive Logic Programming

Inductive Logic Programming PDF Author: Stephen Muggleton
Publisher: Morgan Kaufmann
ISBN: 9780125097154
Category : Computers
Languages : en
Pages : 602

Get Book Here

Book Description
Inductive logic programming is a new research area emerging at present. Whilst inheriting various positive characteristics of the parent subjects of logic programming an machine learning, it is hoped that the new area will overcome many of the limitations of its forbears. This book describes the theory, implementations and applications of Inductive Logic Programming.

Metalearning

Metalearning PDF Author: Pavel Brazdil
Publisher: Springer Nature
ISBN: 3030670244
Category : Artificial intelligence
Languages : en
Pages : 349

Get Book Here

Book Description
This open access book as one of the fastest-growing areas of research in machine learning, metalearning studies principled methods to obtain efficient models and solutions by adapting machine learning and data mining processes. This adaptation usually exploits information from past experience on other tasks and the adaptive processes can involve machine learning approaches. As a related area to metalearning and a hot topic currently, automated machine learning (AutoML) is concerned with automating the machine learning processes. Metalearning and AutoML can help AI learn to control the application of different learning methods and acquire new solutions faster without unnecessary interventions from the user. This book offers a comprehensive and thorough introduction to almost all aspects of metalearning and AutoML, covering the basic concepts and architecture, evaluation, datasets, hyperparameter optimization, ensembles and workflows, and also how this knowledge can be used to select, combine, compose, adapt and configure both algorithms and models to yield faster and better solutions to data mining and data science problems. It can thus help developers to develop systems that can improve themselves through experience. This book is a substantial update of the first edition published in 2009. It includes 18 chapters, more than twice as much as the previous version. This enabled the authors to cover the most relevant topics in more depth and incorporate the overview of recent research in the respective area. The book will be of interest to researchers and graduate students in the areas of machine learning, data mining, data science and artificial intelligence.

Connectionist Approaches to Language Learning

Connectionist Approaches to Language Learning PDF Author: David Touretzky
Publisher: Springer Science & Business Media
ISBN: 1461540089
Category : Computers
Languages : en
Pages : 151

Get Book Here

Book Description
arise automatically as a result of the recursive structure of the task and the continuous nature of the SRN's state space. Elman also introduces a new graphical technique for study ing network behavior based on principal components analysis. He shows that sentences with multiple levels of embedding produce state space trajectories with an intriguing self similar structure. The development and shape of a recurrent network's state space is the subject of Pollack's paper, the most provocative in this collection. Pollack looks more closely at a connectionist network as a continuous dynamical system. He describes a new type of machine learning phenomenon: induction by phase transition. He then shows that under certain conditions, the state space created by these machines can have a fractal or chaotic structure, with a potentially infinite number of states. This is graphically illustrated using a higher-order recurrent network trained to recognize various regular languages over binary strings. Finally, Pollack suggests that it might be possible to exploit the fractal dynamics of these systems to achieve a generative capacity beyond that of finite-state machines.

Robot Learning

Robot Learning PDF Author: J. H. Connell
Publisher: Springer Science & Business Media
ISBN: 1461531845
Category : Technology & Engineering
Languages : en
Pages : 247

Get Book Here

Book Description
Building a robot that learns to perform a task has been acknowledged as one of the major challenges facing artificial intelligence. Self-improving robots would relieve humans from much of the drudgery of programming and would potentially allow operation in environments that were changeable or only partially known. Progress towards this goal would also make fundamental contributions to artificial intelligence by furthering our understanding of how to successfully integrate disparate abilities such as perception, planning, learning and action. Although its roots can be traced back to the late fifties, the area of robot learning has lately seen a resurgence of interest. The flurry of interest in robot learning has partly been fueled by exciting new work in the areas of reinforcement earning, behavior-based architectures, genetic algorithms, neural networks and the study of artificial life. Robot Learning gives an overview of some of the current research projects in robot learning being carried out at leading universities and research laboratories in the United States. The main research directions in robot learning covered in this book include: reinforcement learning, behavior-based architectures, neural networks, map learning, action models, navigation and guided exploration.

Metareasoning

Metareasoning PDF Author: Michael T. Cox
Publisher: MIT Press
ISBN: 0262014807
Category : Computers
Languages : en
Pages : 349

Get Book Here

Book Description
Experts report on the latest artificial intelligence research concerning reasoning about reasoning itself.