Machine Learning Made Easy: A Beginner's Guide for All

Machine Learning Made Easy: A Beginner's Guide for All PDF Author: M.B. Chatfield
Publisher: M.B. Chatfield
ISBN:
Category : Computers
Languages : en
Pages : 258

Get Book Here

Book Description
Unleash the power of machine learning to automate tasks, make predictions, and solve complex problems. Machine learning is a powerful tool that can be used to automate tasks, make predictions, and solve complex problems. It is used in a wide variety of industries, including healthcare, finance, and manufacturing. Machine Learning Made Easy is the perfect resource for anyone who wants to learn the basics of machine learning. This comprehensive guide covers everything you need to know, from the basics of machine learning algorithms to advanced topics such as deep learning. Whether you're a student, a business professional, or a data enthusiast, Machine Learning Made Easy is the essential resource for learning about machine learning. Here are some of the key topics covered in the book: Introduction to machine learning Types of machine learning algorithms Choosing the right machine learning algorithm Training a machine learning model Evaluating a machine learning model Using machine learning to automate tasks Using machine learning to make predictions If you are a beginner who wants to learn about machine learning, Machine Learning Made Easy is a great place to start.

Machine Learning Made Easy: A Beginner's Guide for All

Machine Learning Made Easy: A Beginner's Guide for All PDF Author: M.B. Chatfield
Publisher: M.B. Chatfield
ISBN:
Category : Computers
Languages : en
Pages : 258

Get Book Here

Book Description
Unleash the power of machine learning to automate tasks, make predictions, and solve complex problems. Machine learning is a powerful tool that can be used to automate tasks, make predictions, and solve complex problems. It is used in a wide variety of industries, including healthcare, finance, and manufacturing. Machine Learning Made Easy is the perfect resource for anyone who wants to learn the basics of machine learning. This comprehensive guide covers everything you need to know, from the basics of machine learning algorithms to advanced topics such as deep learning. Whether you're a student, a business professional, or a data enthusiast, Machine Learning Made Easy is the essential resource for learning about machine learning. Here are some of the key topics covered in the book: Introduction to machine learning Types of machine learning algorithms Choosing the right machine learning algorithm Training a machine learning model Evaluating a machine learning model Using machine learning to automate tasks Using machine learning to make predictions If you are a beginner who wants to learn about machine learning, Machine Learning Made Easy is a great place to start.

Machine Learning For Dummies

Machine Learning For Dummies PDF Author: John Paul Mueller
Publisher: John Wiley & Sons
ISBN: 1119724015
Category : Computers
Languages : en
Pages : 471

Get Book Here

Book Description
One of Mark Cuban’s top reads for better understanding A.I. (inc.com, 2021) Your comprehensive entry-level guide to machine learning While machine learning expertise doesn’t quite mean you can create your own Turing Test-proof android—as in the movie Ex Machina—it is a form of artificial intelligence and one of the most exciting technological means of identifying opportunities and solving problems fast and on a large scale. Anyone who masters the principles of machine learning is mastering a big part of our tech future and opening up incredible new directions in careers that include fraud detection, optimizing search results, serving real-time ads, credit-scoring, building accurate and sophisticated pricing models—and way, way more. Unlike most machine learning books, the fully updated 2nd Edition of Machine Learning For Dummies doesn't assume you have years of experience using programming languages such as Python (R source is also included in a downloadable form with comments and explanations), but lets you in on the ground floor, covering the entry-level materials that will get you up and running building models you need to perform practical tasks. It takes a look at the underlying—and fascinating—math principles that power machine learning but also shows that you don't need to be a math whiz to build fun new tools and apply them to your work and study. Understand the history of AI and machine learning Work with Python 3.8 and TensorFlow 2.x (and R as a download) Build and test your own models Use the latest datasets, rather than the worn out data found in other books Apply machine learning to real problems Whether you want to learn for college or to enhance your business or career performance, this friendly beginner's guide is your best introduction to machine learning, allowing you to become quickly confident using this amazing and fast-developing technology that's impacting lives for the better all over the world.

Artificial Intelligence For Dummies

Artificial Intelligence For Dummies PDF Author: John Paul Mueller
Publisher: John Wiley & Sons
ISBN: 1119467586
Category : Computers
Languages : en
Pages : 60

Get Book Here

Book Description
Step into the future with AI The term "Artificial Intelligence" has been around since the 1950s, but a lot has changed since then. Today, AI is referenced in the news, books, movies, and TV shows, and the exact definition is often misinterpreted. Artificial Intelligence For Dummies provides a clear introduction to AI and how it’s being used today. Inside, you’ll get a clear overview of the technology, the common misconceptions surrounding it, and a fascinating look at its applications in everything from self-driving cars and drones to its contributions in the medical field. Learn about what AI has contributed to society Explore uses for AI in computer applications Discover the limits of what AI can do Find out about the history of AI The world of AI is fascinating—and this hands-on guide makes it more accessible than ever!

Grokking Deep Learning

Grokking Deep Learning PDF Author: Andrew W. Trask
Publisher: Simon and Schuster
ISBN: 163835720X
Category : Computers
Languages : en
Pages : 475

Get Book Here

Book Description
Summary Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Deep learning, a branch of artificial intelligence, teaches computers to learn by using neural networks, technology inspired by the human brain. Online text translation, self-driving cars, personalized product recommendations, and virtual voice assistants are just a few of the exciting modern advancements possible thanks to deep learning. About the Book Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Using only Python and its math-supporting library, NumPy, you'll train your own neural networks to see and understand images, translate text into different languages, and even write like Shakespeare! When you're done, you'll be fully prepared to move on to mastering deep learning frameworks. What's inside The science behind deep learning Building and training your own neural networks Privacy concepts, including federated learning Tips for continuing your pursuit of deep learning About the Reader For readers with high school-level math and intermediate programming skills. About the Author Andrew Trask is a PhD student at Oxford University and a research scientist at DeepMind. Previously, Andrew was a researcher and analytics product manager at Digital Reasoning, where he trained the world's largest artificial neural network and helped guide the analytics roadmap for the Synthesys cognitive computing platform. Table of Contents Introducing deep learning: why you should learn it Fundamental concepts: how do machines learn? Introduction to neural prediction: forward propagation Introduction to neural learning: gradient descent Learning multiple weights at a time: generalizing gradient descent Building your first deep neural network: introduction to backpropagation How to picture neural networks: in your head and on paper Learning signal and ignoring noise:introduction to regularization and batching Modeling probabilities and nonlinearities: activation functions Neural learning about edges and corners: intro to convolutional neural networks Neural networks that understand language: king - man + woman == ? Neural networks that write like Shakespeare: recurrent layers for variable-length data Introducing automatic optimization: let's build a deep learning framework Learning to write like Shakespeare: long short-term memory Deep learning on unseen data: introducing federated learning Where to go from here: a brief guide

Mathematics for Machine Learning

Mathematics for Machine Learning PDF Author: Marc Peter Deisenroth
Publisher: Cambridge University Press
ISBN: 1108569323
Category : Computers
Languages : en
Pages : 392

Get Book Here

Book Description
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Deep Learning For Dummies

Deep Learning For Dummies PDF Author: John Paul Mueller
Publisher: John Wiley & Sons
ISBN: 1119543045
Category : Computers
Languages : en
Pages : 370

Get Book Here

Book Description
Take a deep dive into deep learning Deep learning provides the means for discerning patterns in the data that drive online business and social media outlets. Deep Learning for Dummies gives you the information you need to take the mystery out of the topic—and all of the underlying technologies associated with it. In no time, you’ll make sense of those increasingly confusing algorithms, and find a simple and safe environment to experiment with deep learning. The book develops a sense of precisely what deep learning can do at a high level and then provides examples of the major deep learning application types. Includes sample code Provides real-world examples within the approachable text Offers hands-on activities to make learning easier Shows you how to use Deep Learning more effectively with the right tools This book is perfect for those who want to better understand the basis of the underlying technologies that we use each and every day.

Advances in Financial Machine Learning

Advances in Financial Machine Learning PDF Author: Marcos Lopez de Prado
Publisher: John Wiley & Sons
ISBN: 1119482119
Category : Business & Economics
Languages : en
Pages : 395

Get Book Here

Book Description
Learn to understand and implement the latest machine learning innovations to improve your investment performance Machine learning (ML) is changing virtually every aspect of our lives. Today, ML algorithms accomplish tasks that – until recently – only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest. In the book, readers will learn how to: Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.

Mathematics for Computer Programmers

Mathematics for Computer Programmers PDF Author: Christine Benedyk Kay
Publisher: Prentice Hall
ISBN:
Category : Mathematics
Languages : en
Pages : 424

Get Book Here

Book Description
Number systems I. Sets. Integer and real number sets. Format arithmetic. Algorithms. Solving problems using input. process, and output. Algorithms. Flowcharts. Algebraic applications for programming. Language of algebra. Algebraic expressions of "not equal". Exponents. Equations. Advanced algebra concepts. Quadratic equations. Linear equations. Linear programming. Functions. Sequence and subscripted variables. Matrices. Binary systems. Number base concepts. Binary, octal, and hexadecimal numbers. Computer codes. Boolean algebra concepts. Mathematical logic. Boolean algebra and computer logic.

Physics for Mathematicians

Physics for Mathematicians PDF Author: Michael Spivak
Publisher:
ISBN: 9780914098324
Category : Mechanics
Languages : en
Pages : 733

Get Book Here

Book Description


Python Made Easy: A Simple Guide for Everyone

Python Made Easy: A Simple Guide for Everyone PDF Author: M.B. Chatfield
Publisher: M.B. Chatfield
ISBN:
Category : Computers
Languages : en
Pages : 35

Get Book Here

Book Description
Learn Python the easy way! Python is one of the most popular programming languages in the world. It is used by millions of people for a variety of tasks, including web development, data analysis, and machine learning. Python Made Easy is a simple guide for everyone who wants to learn Python. This book is perfect for beginners, with no prior programming experience required. In this book, you will learn: The basics of Python syntax How to use variables, operators, and expressions How to control program flow with conditional statements and loops How to work with functions, modules, and packages How to use Python for data analysis and machine learning Python Made Easy is a comprehensive and easy-to-follow guide that will teach you everything you need to know to get started with Python. With this book, you will be able to: Write simple Python programs Use Python to automate tasks Analyze data with Python Build machine learning models with Python Python Made Easy is the perfect resource for anyone who wants to learn Python. This book is packed with clear explanations, helpful examples, and practice exercises. Order your copy today and start learning Python! About the Author M.B. Chatfield is passionate about teaching people how to code. He is the author of several popular programming books, including "Python Made Easy".