Machine Learning for Multimedia Content Analysis

Machine Learning for Multimedia Content Analysis PDF Author: Yihong Gong
Publisher: Springer
ISBN: 9781441943538
Category : Computers
Languages : en
Pages : 277

Get Book Here

Book Description
This volume introduces machine learning techniques that are particularly powerful and effective for modeling multimedia data and common tasks of multimedia content analysis. It systematically covers key machine learning techniques in an intuitive fashion and demonstrates their applications through case studies. Coverage includes examples of unsupervised learning, generative models and discriminative models. In addition, the book examines Maximum Margin Markov (M3) networks, which strive to combine the advantages of both the graphical models and Support Vector Machines (SVM).

Machine Learning for Multimedia Content Analysis

Machine Learning for Multimedia Content Analysis PDF Author: Yihong Gong
Publisher: Springer
ISBN: 9781441943538
Category : Computers
Languages : en
Pages : 277

Get Book Here

Book Description
This volume introduces machine learning techniques that are particularly powerful and effective for modeling multimedia data and common tasks of multimedia content analysis. It systematically covers key machine learning techniques in an intuitive fashion and demonstrates their applications through case studies. Coverage includes examples of unsupervised learning, generative models and discriminative models. In addition, the book examines Maximum Margin Markov (M3) networks, which strive to combine the advantages of both the graphical models and Support Vector Machines (SVM).

Machine Learning for Multimedia Content Analysis

Machine Learning for Multimedia Content Analysis PDF Author: Yihong Gong
Publisher: Springer Science & Business Media
ISBN: 0387699422
Category : Computers
Languages : en
Pages : 282

Get Book Here

Book Description
This volume introduces machine learning techniques that are particularly powerful and effective for modeling multimedia data and common tasks of multimedia content analysis. It systematically covers key machine learning techniques in an intuitive fashion and demonstrates their applications through case studies. Coverage includes examples of unsupervised learning, generative models and discriminative models. In addition, the book examines Maximum Margin Markov (M3) networks, which strive to combine the advantages of both the graphical models and Support Vector Machines (SVM).

Machine Learning Techniques for Multimedia

Machine Learning Techniques for Multimedia PDF Author: Matthieu Cord
Publisher: Springer Science & Business Media
ISBN: 3540751718
Category : Computers
Languages : en
Pages : 297

Get Book Here

Book Description
Processing multimedia content has emerged as a key area for the application of machine learning techniques, where the objectives are to provide insight into the domain from which the data is drawn, and to organize that data and improve the performance of the processes manipulating it. Arising from the EU MUSCLE network, this multidisciplinary book provides a comprehensive coverage of the most important machine learning techniques used and their application in this domain.

Machine Learning for Audio, Image and Video Analysis

Machine Learning for Audio, Image and Video Analysis PDF Author: Francesco Camastra
Publisher: Springer
ISBN: 144716735X
Category : Computers
Languages : en
Pages : 564

Get Book Here

Book Description
This second edition focuses on audio, image and video data, the three main types of input that machines deal with when interacting with the real world. A set of appendices provides the reader with self-contained introductions to the mathematical background necessary to read the book. Divided into three main parts, From Perception to Computation introduces methodologies aimed at representing the data in forms suitable for computer processing, especially when it comes to audio and images. Whilst the second part, Machine Learning includes an extensive overview of statistical techniques aimed at addressing three main problems, namely classification (automatically assigning a data sample to one of the classes belonging to a predefined set), clustering (automatically grouping data samples according to the similarity of their properties) and sequence analysis (automatically mapping a sequence of observations into a sequence of human-understandable symbols). The third part Applications shows how the abstract problems defined in the second part underlie technologies capable to perform complex tasks such as the recognition of hand gestures or the transcription of handwritten data. Machine Learning for Audio, Image and Video Analysis is suitable for students to acquire a solid background in machine learning as well as for practitioners to deepen their knowledge of the state-of-the-art. All application chapters are based on publicly available data and free software packages, thus allowing readers to replicate the experiments.

Challenges and Applications of Data Analytics in Social Perspectives

Challenges and Applications of Data Analytics in Social Perspectives PDF Author: Sathiyamoorthi, V.
Publisher: IGI Global
ISBN: 179982568X
Category : Computers
Languages : en
Pages : 324

Get Book Here

Book Description
With exponentially increasing amounts of data accumulating in real-time, there is no reason why one should not turn data into a competitive advantage. While machine learning, driven by advancements in artificial intelligence, has made great strides, it has not been able to surpass a number of challenges that still prevail in the way of better success. Such limitations as the lack of better methods, deeper understanding of problems, and advanced tools are hindering progress. Challenges and Applications of Data Analytics in Social Perspectives provides innovative insights into the prevailing challenges in data analytics and its application on social media and focuses on various machine learning and deep learning techniques in improving practice and research. The content within this publication examines topics that include collaborative filtering, data visualization, and edge computing. It provides research ideal for data scientists, data analysts, IT specialists, website designers, e-commerce professionals, government officials, software engineers, social media analysts, industry professionals, academicians, researchers, and students.

Machine Learning for Intelligent Multimedia Analytics

Machine Learning for Intelligent Multimedia Analytics PDF Author: Pardeep Kumar
Publisher: Springer Nature
ISBN: 9811594929
Category : Technology & Engineering
Languages : en
Pages : 341

Get Book Here

Book Description
This book presents applications of machine learning techniques in processing multimedia large-scale data. Multimedia such as text, image, audio, video, and graphics stands as one of the most demanding and exciting aspects of the information era. The book discusses new challenges faced by researchers in dealing with these large-scale data and also presents innovative solutions to address several potential research problems, e.g., enabling comprehensive visual classification to fill the semantic gap by exploring large-scale data, offering a promising frontier for detailed multimedia understanding, as well as extract patterns and making effective decisions by analyzing the large collection of data.

Content-Based Analysis of Digital Video

Content-Based Analysis of Digital Video PDF Author: Alan Hanjalic
Publisher: Springer Science & Business Media
ISBN: 1402081154
Category : Computers
Languages : en
Pages : 203

Get Book Here

Book Description
Content-Based Analysis Of Digital Video focuses on fundamental issues underlying the development of content access mechanisms for digital video. It treats topics that are critical to successfully automating the video content extraction and retrieval processes, and includes coverage of: - Video parsing, - Video content indexing and representation, - Affective video content analysis. In this well illustrated book the author integrates related information currently scattered throughout the literature and combines it with new ideas into a unified theoretical approach to video content analysis. The material also suggests ideas for future research. Systems developers, researchers and students working in the area of content-based analysis and retrieval of video and multimedia in general will find this book invaluable.

Intelligent Multimedia Data Analysis

Intelligent Multimedia Data Analysis PDF Author: Siddhartha Bhattacharyya
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110552078
Category : Computers
Languages : en
Pages : 196

Get Book Here

Book Description
This volume comprises eight well-versed contributed chapters devoted to report the latest findings on the intelligent approaches to multimedia data analysis. Multimedia data is a combination of different discrete and continuous content forms like text, audio, images, videos, animations and interactional data. At least a single continuous media in the transmitted information generates multimedia information. Due to these different types of varieties, multimedia data present varied degrees of uncertainties and imprecision, which cannot be easy to deal by the conventional computing paradigm. Soft computing technologies are quite efficient to handle the imprecision and uncertainty of the multimedia data and they are flexible enough to process the real-world information. Proper analysis of multimedia data finds wide applications in medical diagnosis, video surveillance, text annotation etc. This volume is intended to be used as a reference by undergraduate and post graduate students of the disciplines of computer science, electronics and telecommunication, information science and electrical engineering. THE SERIES: FRONTIERS IN COMPUTATIONAL INTELLIGENCE The series Frontiers In Computational Intelligence is envisioned to provide comprehensive coverage and understanding of cutting edge research in computational intelligence. It intends to augment the scholarly discourse on all topics relating to the advances in artifi cial life and machine learning in the form of metaheuristics, approximate reasoning, and robotics. Latest research fi ndings are coupled with applications to varied domains of engineering and computer sciences. This field is steadily growing especially with the advent of novel machine learning algorithms being applied to different domains of engineering and technology. The series brings together leading researchers that intend to continue to advance the fi eld and create a broad knowledge about the most recent state of the art.

Machine Learning for Text

Machine Learning for Text PDF Author: Charu C. Aggarwal
Publisher: Springer
ISBN: 3319735314
Category : Computers
Languages : en
Pages : 510

Get Book Here

Book Description
Text analytics is a field that lies on the interface of information retrieval,machine learning, and natural language processing, and this textbook carefully covers a coherently organized framework drawn from these intersecting topics. The chapters of this textbook is organized into three categories: - Basic algorithms: Chapters 1 through 7 discuss the classical algorithms for machine learning from text such as preprocessing, similarity computation, topic modeling, matrix factorization, clustering, classification, regression, and ensemble analysis. - Domain-sensitive mining: Chapters 8 and 9 discuss the learning methods from text when combined with different domains such as multimedia and the Web. The problem of information retrieval and Web search is also discussed in the context of its relationship with ranking and machine learning methods. - Sequence-centric mining: Chapters 10 through 14 discuss various sequence-centric and natural language applications, such as feature engineering, neural language models, deep learning, text summarization, information extraction, opinion mining, text segmentation, and event detection. This textbook covers machine learning topics for text in detail. Since the coverage is extensive,multiple courses can be offered from the same book, depending on course level. Even though the presentation is text-centric, Chapters 3 to 7 cover machine learning algorithms that are often used indomains beyond text data. Therefore, the book can be used to offer courses not just in text analytics but also from the broader perspective of machine learning (with text as a backdrop). This textbook targets graduate students in computer science, as well as researchers, professors, and industrial practitioners working in these related fields. This textbook is accompanied with a solution manual for classroom teaching.

Intelligent Analysis of Multimedia Information

Intelligent Analysis of Multimedia Information PDF Author: Bhattacharyya, Siddhartha
Publisher: IGI Global
ISBN: 1522504990
Category : Computers
Languages : en
Pages : 543

Get Book Here

Book Description
Multimedia represents information in novel and varied formats. One of the most prevalent examples of continuous media is video. Extracting underlying data from these videos can be an arduous task. From video indexing, surveillance, and mining, complex computational applications are required to process this data. Intelligent Analysis of Multimedia Information is a pivotal reference source for the latest scholarly research on the implementation of innovative techniques to a broad spectrum of multimedia applications by presenting emerging methods in continuous media processing and manipulation. This book offers a fresh perspective for students and researchers of information technology, media professionals, and programmers.