Machine Learning for Email

Machine Learning for Email PDF Author: Drew Conway
Publisher: "O'Reilly Media, Inc."
ISBN: 1449320708
Category : Computers
Languages : en
Pages : 145

Get Book Here

Book Description
If you’re an experienced programmer willing to crunch data, this concise guide will show you how to use machine learning to work with email. You’ll learn how to write algorithms that automatically sort and redirect email based on statistical patterns. Authors Drew Conway and John Myles White approach the process in a practical fashion, using a case-study driven approach rather than a traditional math-heavy presentation. This book also includes a short tutorial on using the popular R language to manipulate and analyze data. You’ll get clear examples for analyzing sample data and writing machine learning programs with R. Mine email content with R functions, using a collection of sample files Analyze the data and use the results to write a Bayesian spam classifier Rank email by importance, using factors such as thread activity Use your email ranking analysis to write a priority inbox program Test your classifier and priority inbox with a separate email sample set

Machine Learning for Email

Machine Learning for Email PDF Author: Drew Conway
Publisher: "O'Reilly Media, Inc."
ISBN: 1449320708
Category : Computers
Languages : en
Pages : 145

Get Book Here

Book Description
If you’re an experienced programmer willing to crunch data, this concise guide will show you how to use machine learning to work with email. You’ll learn how to write algorithms that automatically sort and redirect email based on statistical patterns. Authors Drew Conway and John Myles White approach the process in a practical fashion, using a case-study driven approach rather than a traditional math-heavy presentation. This book also includes a short tutorial on using the popular R language to manipulate and analyze data. You’ll get clear examples for analyzing sample data and writing machine learning programs with R. Mine email content with R functions, using a collection of sample files Analyze the data and use the results to write a Bayesian spam classifier Rank email by importance, using factors such as thread activity Use your email ranking analysis to write a priority inbox program Test your classifier and priority inbox with a separate email sample set

Machine Learning for Hackers

Machine Learning for Hackers PDF Author: Drew Conway
Publisher: "O'Reilly Media, Inc."
ISBN: 1449330533
Category : Computers
Languages : en
Pages : 323

Get Book Here

Book Description
If you’re an experienced programmer interested in crunching data, this book will get you started with machine learning—a toolkit of algorithms that enables computers to train themselves to automate useful tasks. Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation. Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you’ll learn how to analyze sample datasets and write simple machine learning algorithms. Machine Learning for Hackers is ideal for programmers from any background, including business, government, and academic research. Develop a naïve Bayesian classifier to determine if an email is spam, based only on its text Use linear regression to predict the number of page views for the top 1,000 websites Learn optimization techniques by attempting to break a simple letter cipher Compare and contrast U.S. Senators statistically, based on their voting records Build a “whom to follow” recommendation system from Twitter data

A Machine-Learning Approach to Phishing Detection and Defense

A Machine-Learning Approach to Phishing Detection and Defense PDF Author: O.A. Akanbi
Publisher: Syngress
ISBN: 0128029463
Category : Computers
Languages : en
Pages : 101

Get Book Here

Book Description
Phishing is one of the most widely-perpetrated forms of cyber attack, used to gather sensitive information such as credit card numbers, bank account numbers, and user logins and passwords, as well as other information entered via a web site. The authors of A Machine-Learning Approach to Phishing Detetion and Defense have conducted research to demonstrate how a machine learning algorithm can be used as an effective and efficient tool in detecting phishing websites and designating them as information security threats. This methodology can prove useful to a wide variety of businesses and organizations who are seeking solutions to this long-standing threat. A Machine-Learning Approach to Phishing Detetion and Defense also provides information security researchers with a starting point for leveraging the machine algorithm approach as a solution to other information security threats. - Discover novel research into the uses of machine-learning principles and algorithms to detect and prevent phishing attacks - Help your business or organization avoid costly damage from phishing sources - Gain insight into machine-learning strategies for facing a variety of information security threats

Machine Learning: ECML 2004

Machine Learning: ECML 2004 PDF Author: Jean-Francois Boulicaut
Publisher: Springer
ISBN: 3540301151
Category : Computers
Languages : en
Pages : 597

Get Book Here

Book Description
The proceedings of ECML/PKDD 2004 are published in two separate, albeit - tertwined,volumes:theProceedingsofthe 15thEuropeanConferenceonMac- ne Learning (LNAI 3201) and the Proceedings of the 8th European Conferences on Principles and Practice of Knowledge Discovery in Databases (LNAI 3202). The two conferences were co-located in Pisa, Tuscany, Italy during September 20–24, 2004. It was the fourth time in a row that ECML and PKDD were co-located. - ter the successful co-locations in Freiburg (2001), Helsinki (2002), and Cavtat- Dubrovnik (2003), it became clear that researchersstrongly supported the or- nization of a major scienti?c event about machine learning and data mining in Europe. We are happy to provide some statistics about the conferences. 581 di?erent papers were submitted to ECML/PKDD (about a 75% increase over 2003); 280 weresubmittedtoECML2004only,194weresubmittedtoPKDD2004only,and 107weresubmitted to both.Aroundhalfofthe authorsforsubmitted papersare from outside Europe, which is a clear indicator of the increasing attractiveness of ECML/PKDD. The Program Committee members were deeply involved in what turned out to be a highly competitive selection process. We assigned each paper to 3 - viewers, deciding on the appropriate PC for papers submitted to both ECML and PKDD. As a result, ECML PC members reviewed 312 papers and PKDD PC members reviewed 269 papers. We accepted for publication regular papers (45 for ECML 2004 and 39 for PKDD 2004) and short papers that were as- ciated with poster presentations (6 for ECML 2004 and 9 for PKDD 2004). The globalacceptance ratewas14.5%for regular papers(17% if we include the short papers).

Grokking Machine Learning

Grokking Machine Learning PDF Author: Luis Serrano
Publisher: Simon and Schuster
ISBN: 1617295914
Category : Computers
Languages : en
Pages : 510

Get Book Here

Book Description
Discover valuable machine learning techniques you can understand and apply using just high-school math. In Grokking Machine Learning you will learn: Supervised algorithms for classifying and splitting data Methods for cleaning and simplifying data Machine learning packages and tools Neural networks and ensemble methods for complex datasets Grokking Machine Learning teaches you how to apply ML to your projects using only standard Python code and high school-level math. No specialist knowledge is required to tackle the hands-on exercises using Python and readily available machine learning tools. Packed with easy-to-follow Python-based exercises and mini-projects, this book sets you on the path to becoming a machine learning expert. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Discover powerful machine learning techniques you can understand and apply using only high school math! Put simply, machine learning is a set of techniques for data analysis based on algorithms that deliver better results as you give them more data. ML powers many cutting-edge technologies, such as recommendation systems, facial recognition software, smart speakers, and even self-driving cars. This unique book introduces the core concepts of machine learning, using relatable examples, engaging exercises, and crisp illustrations. About the book Grokking Machine Learning presents machine learning algorithms and techniques in a way that anyone can understand. This book skips the confused academic jargon and offers clear explanations that require only basic algebra. As you go, you’ll build interesting projects with Python, including models for spam detection and image recognition. You’ll also pick up practical skills for cleaning and preparing data. What's inside Supervised algorithms for classifying and splitting data Methods for cleaning and simplifying data Machine learning packages and tools Neural networks and ensemble methods for complex datasets About the reader For readers who know basic Python. No machine learning knowledge necessary. About the author Luis G. Serrano is a research scientist in quantum artificial intelligence. Previously, he was a Machine Learning Engineer at Google and Lead Artificial Intelligence Educator at Apple. Table of Contents 1 What is machine learning? It is common sense, except done by a computer 2 Types of machine learning 3 Drawing a line close to our points: Linear regression 4 Optimizing the training process: Underfitting, overfitting, testing, and regularization 5 Using lines to split our points: The perceptron algorithm 6 A continuous approach to splitting points: Logistic classifiers 7 How do you measure classification models? Accuracy and its friends 8 Using probability to its maximum: The naive Bayes model 9 Splitting data by asking questions: Decision trees 10 Combining building blocks to gain more power: Neural networks 11 Finding boundaries with style: Support vector machines and the kernel method 12 Combining models to maximize results: Ensemble learning 13 Putting it all in practice: A real-life example of data engineering and machine learning

Machine Intelligence and Big Data Analytics for Cybersecurity Applications

Machine Intelligence and Big Data Analytics for Cybersecurity Applications PDF Author: Yassine Maleh
Publisher: Springer Nature
ISBN: 303057024X
Category : Computers
Languages : en
Pages : 533

Get Book Here

Book Description
This book presents the latest advances in machine intelligence and big data analytics to improve early warning of cyber-attacks, for cybersecurity intrusion detection and monitoring, and malware analysis. Cyber-attacks have posed real and wide-ranging threats for the information society. Detecting cyber-attacks becomes a challenge, not only because of the sophistication of attacks but also because of the large scale and complex nature of today’s IT infrastructures. It discusses novel trends and achievements in machine intelligence and their role in the development of secure systems and identifies open and future research issues related to the application of machine intelligence in the cybersecurity field. Bridging an important gap between machine intelligence, big data, and cybersecurity communities, it aspires to provide a relevant reference for students, researchers, engineers, and professionals working in this area or those interested in grasping its diverse facets and exploring the latest advances on machine intelligence and big data analytics for cybersecurity applications.

Machine Learning Algorithms and Applications

Machine Learning Algorithms and Applications PDF Author: Mettu Srinivas
Publisher: John Wiley & Sons
ISBN: 1119769248
Category : Computers
Languages : en
Pages : 372

Get Book Here

Book Description
Machine Learning Algorithms is for current and ambitious machine learning specialists looking to implement solutions to real-world machine learning problems. It talks entirely about the various applications of machine and deep learning techniques, with each chapter dealing with a novel approach of machine learning architecture for a specific application, and then compares the results with previous algorithms. The book discusses many methods based in different fields, including statistics, pattern recognition, neural networks, artificial intelligence, sentiment analysis, control, and data mining, in order to present a unified treatment of machine learning problems and solutions. All learning algorithms are explained so that the user can easily move from the equations in the book to a computer program.

2021 IEEE SmartWorld, Ubiquitous Intelligence and Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Internet of People and Smart City Innovation (SmartWorld SCALCOM UIC ATC IOP SCI)

2021 IEEE SmartWorld, Ubiquitous Intelligence and Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Internet of People and Smart City Innovation (SmartWorld SCALCOM UIC ATC IOP SCI) PDF Author: IEEE Staff
Publisher:
ISBN: 9781665429559
Category :
Languages : en
Pages :

Get Book Here

Book Description
The smart world is set to enhance everyday things with abilities of sensation, communication, computation and intelligence so that many tasks and processes could be simplified, efficient, and enjoyable It consists of numerous smart things that can be endowed with different levels forms of intelligence and be connected together for a network level of intelligence At the same time, the fairness and ethics in utilizing such an intelligence is of extreme importance Research on ubiquitous and trustworthy smart world is an emerging research field covering many interdisciplinary areas that benefits humanity and will have significant societal impacts

2020 International Conference on Emerging Trends in Information Technology and Engineering (ic ETITE)

2020 International Conference on Emerging Trends in Information Technology and Engineering (ic ETITE) PDF Author: IEEE Staff
Publisher:
ISBN: 9781728141435
Category :
Languages : en
Pages :

Get Book Here

Book Description
ic ETITE 20 expresses its concern towards the upgrading of research in Information Technology and Engineering It motivates to provide a worldwide platform to researchers far and widespread by exploring their innovations in the field of science and technology The mission is to promote and improve the research and development related to the topics of the conference The essential objective of the conference is to assist the researchers in discovering the global linkage for future joint efforts in their academic outlook

The Hundred-page Machine Learning Book

The Hundred-page Machine Learning Book PDF Author: Andriy Burkov
Publisher:
ISBN: 9781999579500
Category : Machine learning
Languages : en
Pages : 141

Get Book Here

Book Description
Provides a practical guide to get started and execute on machine learning within a few days without necessarily knowing much about machine learning.The first five chapters are enough to get you started and the next few chapters provide you a good feel of more advanced topics to pursue.