Artificial Intelligence and Machine Learning for EDGE Computing

Artificial Intelligence and Machine Learning for EDGE Computing PDF Author: Rajiv Pandey
Publisher: Academic Press
ISBN: 0128240555
Category : Science
Languages : en
Pages : 516

Get Book Here

Book Description
Artificial Intelligence and Machine Learning for Predictive and Analytical Rendering in Edge Computing focuses on the role of AI and machine learning as it impacts and works alongside Edge Computing. Sections cover the growing number of devices and applications in diversified domains of industry, including gaming, speech recognition, medical diagnostics, robotics and computer vision and how they are being driven by Big Data, Artificial Intelligence, Machine Learning and distributed computing, may it be Cloud Computing or the evolving Fog and Edge Computing paradigms. Challenges covered include remote storage and computing, bandwidth overload due to transportation of data from End nodes to Cloud leading in latency issues, security issues in transporting sensitive medical and financial information across larger gaps in points of data generation and computing, as well as design features of Edge nodes to store and run AI/ML algorithms for effective rendering. - Provides a reference handbook on the evolution of distributed systems, including Cloud, Fog and Edge Computing - Integrates the various Artificial Intelligence and Machine Learning techniques for effective predictions at Edge rather than Cloud or remote Data Centers - Provides insight into the features and constraints in Edge Computing and storage, including hardware constraints and the technological/architectural developments that shall overcome those constraints

Artificial Intelligence and Machine Learning for EDGE Computing

Artificial Intelligence and Machine Learning for EDGE Computing PDF Author: Rajiv Pandey
Publisher: Academic Press
ISBN: 0128240555
Category : Science
Languages : en
Pages : 516

Get Book Here

Book Description
Artificial Intelligence and Machine Learning for Predictive and Analytical Rendering in Edge Computing focuses on the role of AI and machine learning as it impacts and works alongside Edge Computing. Sections cover the growing number of devices and applications in diversified domains of industry, including gaming, speech recognition, medical diagnostics, robotics and computer vision and how they are being driven by Big Data, Artificial Intelligence, Machine Learning and distributed computing, may it be Cloud Computing or the evolving Fog and Edge Computing paradigms. Challenges covered include remote storage and computing, bandwidth overload due to transportation of data from End nodes to Cloud leading in latency issues, security issues in transporting sensitive medical and financial information across larger gaps in points of data generation and computing, as well as design features of Edge nodes to store and run AI/ML algorithms for effective rendering. - Provides a reference handbook on the evolution of distributed systems, including Cloud, Fog and Edge Computing - Integrates the various Artificial Intelligence and Machine Learning techniques for effective predictions at Edge rather than Cloud or remote Data Centers - Provides insight into the features and constraints in Edge Computing and storage, including hardware constraints and the technological/architectural developments that shall overcome those constraints

Machine Learning for Edge Computing

Machine Learning for Edge Computing PDF Author: Amitoj Singh
Publisher: CRC Press
ISBN: 1000609235
Category : Computers
Languages : en
Pages : 200

Get Book Here

Book Description
This book divides edge intelligence into AI for edge (intelligence-enabled edge computing) and AI on edge (artificial intelligence on edge). It focuses on providing optimal solutions to the key concerns in edge computing through effective AI technologies, and it discusses how to build AI models, i.e., model training and inference, on edge. This book provides insights into this new inter-disciplinary field of edge computing from a broader vision and perspective. The authors discuss machine learning algorithms for edge computing as well as the future needs and potential of the technology. The authors also explain the core concepts, frameworks, patterns, and research roadmap, which offer the necessary background for potential future research programs in edge intelligence. The target audience of this book includes academics, research scholars, industrial experts, scientists, and postgraduate students who are working in the field of Internet of Things (IoT) or edge computing and would like to add machine learning to enhance the capabilities of their work. This book explores the following topics: Edge computing, hardware for edge computing AI, and edge virtualization techniques Edge intelligence and deep learning applications, training, and optimization Machine learning algorithms used for edge computing Reviews AI on IoT Discusses future edge computing needs Amitoj Singh is an Associate Professor at the School of Sciences of Emerging Technologies, Jagat Guru Nanak Dev Punjab State Open University, Punjab, India. Vinay Kukreja is a Professor at the Chitkara Institute of Engineering and Technology, Chitkara University, Punjab, India. Taghi Javdani Gandomani is an Assistant Professor at Shahrekord University, Shahrekord, Iran.

Edge Computing

Edge Computing PDF Author: K. Anitha Kumari
Publisher: CRC Press
ISBN: 1000483592
Category : Computers
Languages : en
Pages : 181

Get Book Here

Book Description
This reference text presents the state-of-the-art in edge computing, its primitives, devices and simulators, applications, and healthcare-based case studies. The text provides integration of blockchain with edge computing systems and integration of edge with Internet of Things (IoT) and cloud computing. It will facilitate readers to setup edge-based environment and work with edge analytics. It covers important topics, including cluster computing, fog computing, networking architecture, edge computing simulators, edge analytics, privacy-preserving schemes, edge computing with blockchain, autonomous vehicles, and cross-domain authentication. Aimed at senior undergraduate, graduate students and professionals in the fields of electrical engineering, electronics engineering, computer science, and information technology, this text: Discusses edge data storage security with case studies and blockchain integration with the edge computing system Covers theoretical methods with the help of applications, use cases, case studies, and examples Provides healthcare real-time case studies elaborated by utilizing the virtues of homomorphic encryption Discusses real-time interfaces, devices, and simulators in detail

Artificial Intelligence for Cloud and Edge Computing

Artificial Intelligence for Cloud and Edge Computing PDF Author: Sanjay Misra
Publisher: Springer Nature
ISBN: 3030808211
Category : Computers
Languages : en
Pages : 358

Get Book Here

Book Description
This book discusses the future possibilities of AI with cloud computing and edge computing. The main goal of this book is to conduct analyses, implementation and discussion of many tools (of artificial intelligence, machine learning and deep learning and cloud computing, fog computing, and edge computing including concepts of cyber security) for understanding integration of these technologies. With this book, readers can quickly get an overview of these emerging topics and get many ideas of the future of AI with cloud, edge, and in many other areas. Topics include machine and deep learning techniques for Internet of Things based cloud systems; security, privacy and trust issues in AI based cloud and IoT based cloud systems; AI for smart data storage in cloud-based IoT; blockchain based solutions for AI based cloud and IoT based cloud systems.This book is relevent to researchers, academics, students, and professionals.

TinyML

TinyML PDF Author: Pete Warden
Publisher: O'Reilly Media
ISBN: 1492052019
Category : Computers
Languages : en
Pages : 504

Get Book Here

Book Description
Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size—small enough to run on a microcontroller. With this practical book you’ll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google’s toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size

Practical Deep Learning for Cloud, Mobile, and Edge

Practical Deep Learning for Cloud, Mobile, and Edge PDF Author: Anirudh Koul
Publisher: "O'Reilly Media, Inc."
ISBN: 1492034819
Category : Computers
Languages : en
Pages : 585

Get Book Here

Book Description
Whether you’re a software engineer aspiring to enter the world of deep learning, a veteran data scientist, or a hobbyist with a simple dream of making the next viral AI app, you might have wondered where to begin. This step-by-step guide teaches you how to build practical deep learning applications for the cloud, mobile, browsers, and edge devices using a hands-on approach. Relying on years of industry experience transforming deep learning research into award-winning applications, Anirudh Koul, Siddha Ganju, and Meher Kasam guide you through the process of converting an idea into something that people in the real world can use. Train, tune, and deploy computer vision models with Keras, TensorFlow, Core ML, and TensorFlow Lite Develop AI for a range of devices including Raspberry Pi, Jetson Nano, and Google Coral Explore fun projects, from Silicon Valley’s Not Hotdog app to 40+ industry case studies Simulate an autonomous car in a video game environment and build a miniature version with reinforcement learning Use transfer learning to train models in minutes Discover 50+ practical tips for maximizing model accuracy and speed, debugging, and scaling to millions of users

Fog, Edge, and Pervasive Computing in Intelligent IoT Driven Applications

Fog, Edge, and Pervasive Computing in Intelligent IoT Driven Applications PDF Author: Deepak Gupta
Publisher: John Wiley & Sons
ISBN: 1119670071
Category : Technology & Engineering
Languages : en
Pages : 464

Get Book Here

Book Description
A practical guide to the design, implementation, evaluation, and deployment of emerging technologies for intelligent IoT applications With the rapid development in artificially intelligent and hybrid technologies, IoT, edge, fog-driven, and pervasive computing techniques are becoming important parts of our daily lives. This book focuses on recent advances, roles, and benefits of these technologies, describing the latest intelligent systems from a practical point of view. Fog, Edge, and Pervasive Computing in Intelligent IoT Driven Applications is also valuable for engineers and professionals trying to solve practical, economic, or technical problems. With a uniquely practical approach spanning multiple fields of interest, contributors cover theory, applications, and design methodologies for intelligent systems. These technologies are rapidly transforming engineering, industry, and agriculture by enabling real-time processing of data via computational, resource-oriented metaheuristics and machine learning algorithms. As edge/fog computing and associated technologies are implemented far and wide, we are now able to solve previously intractable problems. With chapters contributed by experts in the field, this book: Describes Machine Learning frameworks and algorithms for edge, fog, and pervasive computing Considers probabilistic storage systems and proven optimization techniques for intelligent IoT Covers 5G edge network slicing and virtual network systems that utilize new networking capacity Explores resource provisioning and bandwidth allocation for edge, fog, and pervasive mobile applications Presents emerging applications of intelligent IoT, including smart farming, factory automation, marketing automation, medical diagnosis, and more Researchers, graduate students, and practitioners working in the intelligent systems domain will appreciate this book’s practical orientation and comprehensive coverage. Intelligent IoT is revolutionizing every industry and field today, and Fog, Edge, and Pervasive Computing in Intelligent IoT Driven Applications provides the background, orientation, and inspiration needed to begin.

Mobile Edge Computing

Mobile Edge Computing PDF Author: Yan Zhang
Publisher: Springer Nature
ISBN: 3030839443
Category : Computers
Languages : en
Pages : 123

Get Book Here

Book Description
This is an open access book. It offers comprehensive, self-contained knowledge on Mobile Edge Computing (MEC), which is a very promising technology for achieving intelligence in the next-generation wireless communications and computing networks.The book starts with the basic concepts, key techniques and network architectures of MEC. Then, we present the wide applications of MEC, including edge caching, 6G networks, Internet of Vehicles, and UAVs. In the last part, we present new opportunities when MEC meets blockchain, Artificial Intelligence, and distributed machine learning (e.g., federated learning). We also identify the emerging applications of MEC in pandemic, industrial Internet of Things and disaster management.The book allows an easy cross-reference owing to the broad coverage on both the principle and applications of MEC. The book is written for people interested in communications and computer networks at all levels. The primary audience includes senior undergraduates, postgraduates, educators, scientists, researchers, developers, engineers, innovators and research strategists.

Fog Computing

Fog Computing PDF Author: Assad Abbas
Publisher: John Wiley & Sons
ISBN: 1119551692
Category : Technology & Engineering
Languages : en
Pages : 616

Get Book Here

Book Description
Summarizes the current state and upcoming trends within the area of fog computing Written by some of the leading experts in the field, Fog Computing: Theory and Practice focuses on the technological aspects of employing fog computing in various application domains, such as smart healthcare, industrial process control and improvement, smart cities, and virtual learning environments. In addition, the Machine-to-Machine (M2M) communication methods for fog computing environments are covered in depth. Presented in two parts—Fog Computing Systems and Architectures, and Fog Computing Techniques and Application—this book covers such important topics as energy efficiency and Quality of Service (QoS) issues, reliability and fault tolerance, load balancing, and scheduling in fog computing systems. It also devotes special attention to emerging trends and the industry needs associated with utilizing the mobile edge computing, Internet of Things (IoT), resource and pricing estimation, and virtualization in the fog environments. Includes chapters on deep learning, mobile edge computing, smart grid, and intelligent transportation systems beyond the theoretical and foundational concepts Explores real-time traffic surveillance from video streams and interoperability of fog computing architectures Presents the latest research on data quality in the IoT, privacy, security, and trust issues in fog computing Fog Computing: Theory and Practice provides a platform for researchers, practitioners, and graduate students from computer science, computer engineering, and various other disciplines to gain a deep understanding of fog computing.

Smart Systems Design, Applications, and Challenges

Smart Systems Design, Applications, and Challenges PDF Author: Rodrigues, João M.F.
Publisher: IGI Global
ISBN: 1799821145
Category : Computers
Languages : en
Pages : 459

Get Book Here

Book Description
Smart systems when connected to artificial intelligence (AI) are still closely associated with some popular misconceptions that cause the general public to either have unrealistic fears about AI or to expect too much about how it will change our workplace and life in general. It is important to show that such fears are unfounded, and that new trends, technologies, and smart systems will be able to improve the way we live, benefiting society without replacing humans in their core activities. Smart Systems Design, Applications, and Challenges provides emerging research that presents state-of-the-art technologies and available systems in the domains of smart systems and AI and explains solutions from an augmented intelligence perspective, showing that these technologies can be used to benefit, instead of replace, humans by augmenting the information and actions of their daily lives. The book addresses all smart systems that incorporate functions of sensing, actuation, and control in order to describe and analyze a situation and make decisions based on the available data in a predictive or adaptive manner. Highlighting a broad range of topics such as business intelligence, cloud computing, and autonomous vehicles, this book is ideally designed for engineers, investigators, IT professionals, researchers, developers, data analysts, professors, and students.