Author: John Paul Mueller
Publisher: John Wiley & Sons
ISBN: 1119724015
Category : Computers
Languages : en
Pages : 471
Book Description
One of Mark Cuban’s top reads for better understanding A.I. (inc.com, 2021) Your comprehensive entry-level guide to machine learning While machine learning expertise doesn’t quite mean you can create your own Turing Test-proof android—as in the movie Ex Machina—it is a form of artificial intelligence and one of the most exciting technological means of identifying opportunities and solving problems fast and on a large scale. Anyone who masters the principles of machine learning is mastering a big part of our tech future and opening up incredible new directions in careers that include fraud detection, optimizing search results, serving real-time ads, credit-scoring, building accurate and sophisticated pricing models—and way, way more. Unlike most machine learning books, the fully updated 2nd Edition of Machine Learning For Dummies doesn't assume you have years of experience using programming languages such as Python (R source is also included in a downloadable form with comments and explanations), but lets you in on the ground floor, covering the entry-level materials that will get you up and running building models you need to perform practical tasks. It takes a look at the underlying—and fascinating—math principles that power machine learning but also shows that you don't need to be a math whiz to build fun new tools and apply them to your work and study. Understand the history of AI and machine learning Work with Python 3.8 and TensorFlow 2.x (and R as a download) Build and test your own models Use the latest datasets, rather than the worn out data found in other books Apply machine learning to real problems Whether you want to learn for college or to enhance your business or career performance, this friendly beginner's guide is your best introduction to machine learning, allowing you to become quickly confident using this amazing and fast-developing technology that's impacting lives for the better all over the world.
Machine Learning For Dummies
Author: John Paul Mueller
Publisher: John Wiley & Sons
ISBN: 1119724015
Category : Computers
Languages : en
Pages : 471
Book Description
One of Mark Cuban’s top reads for better understanding A.I. (inc.com, 2021) Your comprehensive entry-level guide to machine learning While machine learning expertise doesn’t quite mean you can create your own Turing Test-proof android—as in the movie Ex Machina—it is a form of artificial intelligence and one of the most exciting technological means of identifying opportunities and solving problems fast and on a large scale. Anyone who masters the principles of machine learning is mastering a big part of our tech future and opening up incredible new directions in careers that include fraud detection, optimizing search results, serving real-time ads, credit-scoring, building accurate and sophisticated pricing models—and way, way more. Unlike most machine learning books, the fully updated 2nd Edition of Machine Learning For Dummies doesn't assume you have years of experience using programming languages such as Python (R source is also included in a downloadable form with comments and explanations), but lets you in on the ground floor, covering the entry-level materials that will get you up and running building models you need to perform practical tasks. It takes a look at the underlying—and fascinating—math principles that power machine learning but also shows that you don't need to be a math whiz to build fun new tools and apply them to your work and study. Understand the history of AI and machine learning Work with Python 3.8 and TensorFlow 2.x (and R as a download) Build and test your own models Use the latest datasets, rather than the worn out data found in other books Apply machine learning to real problems Whether you want to learn for college or to enhance your business or career performance, this friendly beginner's guide is your best introduction to machine learning, allowing you to become quickly confident using this amazing and fast-developing technology that's impacting lives for the better all over the world.
Publisher: John Wiley & Sons
ISBN: 1119724015
Category : Computers
Languages : en
Pages : 471
Book Description
One of Mark Cuban’s top reads for better understanding A.I. (inc.com, 2021) Your comprehensive entry-level guide to machine learning While machine learning expertise doesn’t quite mean you can create your own Turing Test-proof android—as in the movie Ex Machina—it is a form of artificial intelligence and one of the most exciting technological means of identifying opportunities and solving problems fast and on a large scale. Anyone who masters the principles of machine learning is mastering a big part of our tech future and opening up incredible new directions in careers that include fraud detection, optimizing search results, serving real-time ads, credit-scoring, building accurate and sophisticated pricing models—and way, way more. Unlike most machine learning books, the fully updated 2nd Edition of Machine Learning For Dummies doesn't assume you have years of experience using programming languages such as Python (R source is also included in a downloadable form with comments and explanations), but lets you in on the ground floor, covering the entry-level materials that will get you up and running building models you need to perform practical tasks. It takes a look at the underlying—and fascinating—math principles that power machine learning but also shows that you don't need to be a math whiz to build fun new tools and apply them to your work and study. Understand the history of AI and machine learning Work with Python 3.8 and TensorFlow 2.x (and R as a download) Build and test your own models Use the latest datasets, rather than the worn out data found in other books Apply machine learning to real problems Whether you want to learn for college or to enhance your business or career performance, this friendly beginner's guide is your best introduction to machine learning, allowing you to become quickly confident using this amazing and fast-developing technology that's impacting lives for the better all over the world.
Machine Learning for Beginners
Author: Chris Sebastian
Publisher: Python, Machine Learning
ISBN: 9781793016423
Category : Computers
Languages : en
Pages : 164
Book Description
♦♦Bonus: Buy the Paperback version of this book, and get the kindle eBook version included for FREE** Machine Learning is changing the world. You use Machine Learning every day and probably don't know it. In this book, you will learn how ML grew from a desire to make computers able to learn. Trace the development of Machine Learning from the early days of a computer learning how to play checkers, to machines able to beat world masters in chess and go. Understand how large data is so important to Machine Learning, and how the collection of massive amounts of data provides Machine Learning programmers with the information they need to developing learning algorithms.Simple examples will help you understand the complex math and probability statistics underlining Machine Learning. You will also see real-world examples of Machine Learning in action and uncover how these algorithms are making your life better every day.Learn about how artificial intelligence, Machine Learning, Neural Networks, and Swarm Intelligence interact and complement each other as part of the quest to generate machines capable of thinking and reacting to the world. Read about the technical issues with Machine Learning and how they are being overcome. Discover the dark side of ML and what possible outcomes there could be should things go wrong. And finally, learn about the positive future artificial intelligence and Machine Learning promise to bring to the world. In this book, you will discover *The history of Machine Learning *Approaches taken to ML in the past and present *Artificial intelligence and its relationship to ML *How neural networks, big data, regression, and the cloud all play a part in the development of Machine Learning *Compare Machine Learning to the Internet of Things, Robotics, and Swarm Intelligence *Learn about the different models of ML and how each is used to produce learning algorithms *Get access to free software and data sets so you can try out your very own Machine Learning software *Examine some of the technical problems and philosophical dilemmas with ML *See what advanced Machine Learning will make to our world in the future So what are you waiting for???Scroll back up and order this book NOW.
Publisher: Python, Machine Learning
ISBN: 9781793016423
Category : Computers
Languages : en
Pages : 164
Book Description
♦♦Bonus: Buy the Paperback version of this book, and get the kindle eBook version included for FREE** Machine Learning is changing the world. You use Machine Learning every day and probably don't know it. In this book, you will learn how ML grew from a desire to make computers able to learn. Trace the development of Machine Learning from the early days of a computer learning how to play checkers, to machines able to beat world masters in chess and go. Understand how large data is so important to Machine Learning, and how the collection of massive amounts of data provides Machine Learning programmers with the information they need to developing learning algorithms.Simple examples will help you understand the complex math and probability statistics underlining Machine Learning. You will also see real-world examples of Machine Learning in action and uncover how these algorithms are making your life better every day.Learn about how artificial intelligence, Machine Learning, Neural Networks, and Swarm Intelligence interact and complement each other as part of the quest to generate machines capable of thinking and reacting to the world. Read about the technical issues with Machine Learning and how they are being overcome. Discover the dark side of ML and what possible outcomes there could be should things go wrong. And finally, learn about the positive future artificial intelligence and Machine Learning promise to bring to the world. In this book, you will discover *The history of Machine Learning *Approaches taken to ML in the past and present *Artificial intelligence and its relationship to ML *How neural networks, big data, regression, and the cloud all play a part in the development of Machine Learning *Compare Machine Learning to the Internet of Things, Robotics, and Swarm Intelligence *Learn about the different models of ML and how each is used to produce learning algorithms *Get access to free software and data sets so you can try out your very own Machine Learning software *Examine some of the technical problems and philosophical dilemmas with ML *See what advanced Machine Learning will make to our world in the future So what are you waiting for???Scroll back up and order this book NOW.
Machine Learning: Make Your Own Recommender System
Author: Oliver Theobald
Publisher: Machine Learning for Beginners
ISBN: 9781726769037
Category : Computers
Languages : en
Pages : 120
Book Description
Learn How to Make Your Own Recommender System in an Afternoon.Recommender systems are one of the most visible applications of machine learning and data mining today and their uncanny ability to convert our unspoken actions into items we desire is both addicting and concerning. And whether recommender systems excite or scare you, the best way to manage their influence and impact is to understand the architecture and algorithms that play on your personal data. Recommender systems are here to stay and for anyone beginning their journey in data science, this is a lucrative space for future employment.This book will get you up and running with the basics as well as the steps to coding your own recommender system. Exercises include predicting book recommendations, relevant house properties for online marketing purposes, and whether a user will click on an ad campaign. The contents of this book is designed for beginners with some background knowledge of data science, including classical statistics and computing programming. If this is your first exposure to data science, you may want to spend a few hours to read my first book Machine Learning for Absolute Beginners before you get started here.Topics covered in this book: Setting Up A Sandbox Environment With Jupyter NotebookWorking With DataData ReductionBuilding a Collaborative Filtering ModelBuilding a Content-Based Filtering ModelEvaluationPrivacy & EthicsFuture of Recommender SystemsPlease feel welcome to join this introductory course by buying a copy or sending a free sample to your preferred device.
Publisher: Machine Learning for Beginners
ISBN: 9781726769037
Category : Computers
Languages : en
Pages : 120
Book Description
Learn How to Make Your Own Recommender System in an Afternoon.Recommender systems are one of the most visible applications of machine learning and data mining today and their uncanny ability to convert our unspoken actions into items we desire is both addicting and concerning. And whether recommender systems excite or scare you, the best way to manage their influence and impact is to understand the architecture and algorithms that play on your personal data. Recommender systems are here to stay and for anyone beginning their journey in data science, this is a lucrative space for future employment.This book will get you up and running with the basics as well as the steps to coding your own recommender system. Exercises include predicting book recommendations, relevant house properties for online marketing purposes, and whether a user will click on an ad campaign. The contents of this book is designed for beginners with some background knowledge of data science, including classical statistics and computing programming. If this is your first exposure to data science, you may want to spend a few hours to read my first book Machine Learning for Absolute Beginners before you get started here.Topics covered in this book: Setting Up A Sandbox Environment With Jupyter NotebookWorking With DataData ReductionBuilding a Collaborative Filtering ModelBuilding a Content-Based Filtering ModelEvaluationPrivacy & EthicsFuture of Recommender SystemsPlease feel welcome to join this introductory course by buying a copy or sending a free sample to your preferred device.
Deep Learning For Dummies
Author: John Paul Mueller
Publisher: John Wiley & Sons
ISBN: 1119543045
Category : Computers
Languages : en
Pages : 370
Book Description
Take a deep dive into deep learning Deep learning provides the means for discerning patterns in the data that drive online business and social media outlets. Deep Learning for Dummies gives you the information you need to take the mystery out of the topic—and all of the underlying technologies associated with it. In no time, you’ll make sense of those increasingly confusing algorithms, and find a simple and safe environment to experiment with deep learning. The book develops a sense of precisely what deep learning can do at a high level and then provides examples of the major deep learning application types. Includes sample code Provides real-world examples within the approachable text Offers hands-on activities to make learning easier Shows you how to use Deep Learning more effectively with the right tools This book is perfect for those who want to better understand the basis of the underlying technologies that we use each and every day.
Publisher: John Wiley & Sons
ISBN: 1119543045
Category : Computers
Languages : en
Pages : 370
Book Description
Take a deep dive into deep learning Deep learning provides the means for discerning patterns in the data that drive online business and social media outlets. Deep Learning for Dummies gives you the information you need to take the mystery out of the topic—and all of the underlying technologies associated with it. In no time, you’ll make sense of those increasingly confusing algorithms, and find a simple and safe environment to experiment with deep learning. The book develops a sense of precisely what deep learning can do at a high level and then provides examples of the major deep learning application types. Includes sample code Provides real-world examples within the approachable text Offers hands-on activities to make learning easier Shows you how to use Deep Learning more effectively with the right tools This book is perfect for those who want to better understand the basis of the underlying technologies that we use each and every day.
Reinforcement Learning, second edition
Author: Richard S. Sutton
Publisher: MIT Press
ISBN: 0262352702
Category : Computers
Languages : en
Pages : 549
Book Description
The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.
Publisher: MIT Press
ISBN: 0262352702
Category : Computers
Languages : en
Pages : 549
Book Description
The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.
Data Analytics for Absolute Beginners: a Deconstructed Guide to Data Literacy
Author: Oliver Theobald
Publisher:
ISBN: 9781081762469
Category :
Languages : en
Pages : 88
Book Description
While exposure to data has become more or less a daily ritual for the rank-and-file knowledge worker, true understanding-treated in this book as data literacy-resides in knowing what lies behind the data. Everything from the data's source to the specific choice of input variables, algorithmic transformations, and visual representation shape the accuracy, relevance, and value of the data and mark its journey from raw data to business insight. It's also important to grasp the terminology and basic concepts of data analytics as much as it is to have the financial literacy to be successful as a decisionmaker in the business world. In this book, we make sense of data analytics without the assumption that you understand specific data science terminology or advanced programming languages to set you on your path. Topics covered in this book: Data Mining Big Data Machine Learning Alternative Data Data Management Web Scraping Regression Analysis Clustering Analysis Association Analysis Data Visualization Business Intelligence
Publisher:
ISBN: 9781081762469
Category :
Languages : en
Pages : 88
Book Description
While exposure to data has become more or less a daily ritual for the rank-and-file knowledge worker, true understanding-treated in this book as data literacy-resides in knowing what lies behind the data. Everything from the data's source to the specific choice of input variables, algorithmic transformations, and visual representation shape the accuracy, relevance, and value of the data and mark its journey from raw data to business insight. It's also important to grasp the terminology and basic concepts of data analytics as much as it is to have the financial literacy to be successful as a decisionmaker in the business world. In this book, we make sense of data analytics without the assumption that you understand specific data science terminology or advanced programming languages to set you on your path. Topics covered in this book: Data Mining Big Data Machine Learning Alternative Data Data Management Web Scraping Regression Analysis Clustering Analysis Association Analysis Data Visualization Business Intelligence
Deep Learning for Beginners
Author: Dr. Pablo Rivas
Publisher: Packt Publishing Ltd
ISBN: 1838647589
Category : Computers
Languages : en
Pages : 416
Book Description
Implement supervised, unsupervised, and generative deep learning (DL) models using Keras and Dopamine with TensorFlow Key FeaturesUnderstand the fundamental machine learning concepts useful in deep learningLearn the underlying mathematical concepts as you implement deep learning models from scratchExplore easy-to-understand examples and use cases that will help you build a solid foundation in DLBook Description With information on the web exponentially increasing, it has become more difficult than ever to navigate through everything to find reliable content that will help you get started with deep learning. This book is designed to help you if you're a beginner looking to work on deep learning and build deep learning models from scratch, and you already have the basic mathematical and programming knowledge required to get started. The book begins with a basic overview of machine learning, guiding you through setting up popular Python frameworks. You will also understand how to prepare data by cleaning and preprocessing it for deep learning, and gradually go on to explore neural networks. A dedicated section will give you insights into the working of neural networks by helping you get hands-on with training single and multiple layers of neurons. Later, you will cover popular neural network architectures such as CNNs, RNNs, AEs, VAEs, and GANs with the help of simple examples, and learn how to build models from scratch. At the end of each chapter, you will find a question and answer section to help you test what you've learned through the course of the book. By the end of this book, you'll be well-versed with deep learning concepts and have the knowledge you need to use specific algorithms with various tools for different tasks. What you will learnImplement recurrent neural networks (RNNs) and long short-term memory (LSTM) for image classification and natural language processing tasksExplore the role of convolutional neural networks (CNNs) in computer vision and signal processingDiscover the ethical implications of deep learning modelingUnderstand the mathematical terminology associated with deep learningCode a generative adversarial network (GAN) and a variational autoencoder (VAE) to generate images from a learned latent spaceImplement visualization techniques to compare AEs and VAEsWho this book is for This book is for aspiring data scientists and deep learning engineers who want to get started with the fundamentals of deep learning and neural networks. Although no prior knowledge of deep learning or machine learning is required, familiarity with linear algebra and Python programming is necessary to get started.
Publisher: Packt Publishing Ltd
ISBN: 1838647589
Category : Computers
Languages : en
Pages : 416
Book Description
Implement supervised, unsupervised, and generative deep learning (DL) models using Keras and Dopamine with TensorFlow Key FeaturesUnderstand the fundamental machine learning concepts useful in deep learningLearn the underlying mathematical concepts as you implement deep learning models from scratchExplore easy-to-understand examples and use cases that will help you build a solid foundation in DLBook Description With information on the web exponentially increasing, it has become more difficult than ever to navigate through everything to find reliable content that will help you get started with deep learning. This book is designed to help you if you're a beginner looking to work on deep learning and build deep learning models from scratch, and you already have the basic mathematical and programming knowledge required to get started. The book begins with a basic overview of machine learning, guiding you through setting up popular Python frameworks. You will also understand how to prepare data by cleaning and preprocessing it for deep learning, and gradually go on to explore neural networks. A dedicated section will give you insights into the working of neural networks by helping you get hands-on with training single and multiple layers of neurons. Later, you will cover popular neural network architectures such as CNNs, RNNs, AEs, VAEs, and GANs with the help of simple examples, and learn how to build models from scratch. At the end of each chapter, you will find a question and answer section to help you test what you've learned through the course of the book. By the end of this book, you'll be well-versed with deep learning concepts and have the knowledge you need to use specific algorithms with various tools for different tasks. What you will learnImplement recurrent neural networks (RNNs) and long short-term memory (LSTM) for image classification and natural language processing tasksExplore the role of convolutional neural networks (CNNs) in computer vision and signal processingDiscover the ethical implications of deep learning modelingUnderstand the mathematical terminology associated with deep learningCode a generative adversarial network (GAN) and a variational autoencoder (VAE) to generate images from a learned latent spaceImplement visualization techniques to compare AEs and VAEsWho this book is for This book is for aspiring data scientists and deep learning engineers who want to get started with the fundamentals of deep learning and neural networks. Although no prior knowledge of deep learning or machine learning is required, familiarity with linear algebra and Python programming is necessary to get started.
Python Machine Learning for Beginners
Author: Ai Publishing
Publisher:
ISBN: 9781734790153
Category :
Languages : en
Pages : 302
Book Description
Python Machine Learning for BeginnersMachine Learning (ML) and Artificial Intelligence (AI) are here to stay. Yes, that's right. Based on a significant amount of data and evidence, it's obvious that ML and AI are here to stay.Consider any industry today. The practical applications of ML are really driving business results. Whether it's healthcare, e-commerce, government, transportation, social media sites, financial services, manufacturing, oil and gas, marketing and salesYou name it. The list goes on. There's no doubt that ML is going to play a decisive role in every domain in the future.But what does a Machine Learning professional do?A Machine Learning specialist develops intelligent algorithms that learn from data and also adapt to the data quickly. Then, these high-end algorithms make accurate predictions. Python Machine Learning for Beginners presents you with a hands-on approach to learn ML fast.How Is This Book Different?AI Publishing strongly believes in learning by doing methodology. With this in mind, we have crafted this book with care. You will find that the emphasis on the theoretical aspects of machine learning is equal to the emphasis on the practical aspects of the subject matter.You'll learn about data analysis and visualization in great detail in the first half of the book. Then, in the second half, you'll learn about machine learning and statistical models for data science.Each chapter presents you with the theoretical framework behind the different data science and machine learning techniques, and practical examples illustrate the working of these techniques.When you buy this book, your learning journey becomes so much easier. The reason is you get instant access to all the related learning material presented with this book--references, PDFs, Python codes, and exercises--on the publisher's website. All this material is available to you at no extra cost. You can download the ML datasets used in this book at runtime, or you can access them via the Resources/Datasets folder.You'll also find the short course on Python programming in the second chapter immensely useful, especially if you are new to Python. Since this book gives you access to all the Python codes and datasets, you only need access to a computer with the internet to get started. The topics covered include: Introduction and Environment Setup Python Crash Course Python NumPy Library for Data Analysis Introduction to Pandas Library for Data Analysis Data Visualization via Matplotlib, Seaborn, and Pandas Libraries Solving Regression Problems in ML Using Sklearn Library Solving Classification Problems in ML Using Sklearn Library Data Clustering with ML Using Sklearn Library Deep Learning with Python TensorFlow 2.0 Dimensionality Reduction with PCA and LDA Using Sklearn Click the BUY NOW button to start your Machine Learning journey.
Publisher:
ISBN: 9781734790153
Category :
Languages : en
Pages : 302
Book Description
Python Machine Learning for BeginnersMachine Learning (ML) and Artificial Intelligence (AI) are here to stay. Yes, that's right. Based on a significant amount of data and evidence, it's obvious that ML and AI are here to stay.Consider any industry today. The practical applications of ML are really driving business results. Whether it's healthcare, e-commerce, government, transportation, social media sites, financial services, manufacturing, oil and gas, marketing and salesYou name it. The list goes on. There's no doubt that ML is going to play a decisive role in every domain in the future.But what does a Machine Learning professional do?A Machine Learning specialist develops intelligent algorithms that learn from data and also adapt to the data quickly. Then, these high-end algorithms make accurate predictions. Python Machine Learning for Beginners presents you with a hands-on approach to learn ML fast.How Is This Book Different?AI Publishing strongly believes in learning by doing methodology. With this in mind, we have crafted this book with care. You will find that the emphasis on the theoretical aspects of machine learning is equal to the emphasis on the practical aspects of the subject matter.You'll learn about data analysis and visualization in great detail in the first half of the book. Then, in the second half, you'll learn about machine learning and statistical models for data science.Each chapter presents you with the theoretical framework behind the different data science and machine learning techniques, and practical examples illustrate the working of these techniques.When you buy this book, your learning journey becomes so much easier. The reason is you get instant access to all the related learning material presented with this book--references, PDFs, Python codes, and exercises--on the publisher's website. All this material is available to you at no extra cost. You can download the ML datasets used in this book at runtime, or you can access them via the Resources/Datasets folder.You'll also find the short course on Python programming in the second chapter immensely useful, especially if you are new to Python. Since this book gives you access to all the Python codes and datasets, you only need access to a computer with the internet to get started. The topics covered include: Introduction and Environment Setup Python Crash Course Python NumPy Library for Data Analysis Introduction to Pandas Library for Data Analysis Data Visualization via Matplotlib, Seaborn, and Pandas Libraries Solving Regression Problems in ML Using Sklearn Library Solving Classification Problems in ML Using Sklearn Library Data Clustering with ML Using Sklearn Library Deep Learning with Python TensorFlow 2.0 Dimensionality Reduction with PCA and LDA Using Sklearn Click the BUY NOW button to start your Machine Learning journey.
Deep Learning
Author: John D. Kelleher
Publisher: MIT Press
ISBN: 0262537559
Category : Computers
Languages : en
Pages : 298
Book Description
An accessible introduction to the artificial intelligence technology that enables computer vision, speech recognition, machine translation, and driverless cars. Deep learning is an artificial intelligence technology that enables computer vision, speech recognition in mobile phones, machine translation, AI games, driverless cars, and other applications. When we use consumer products from Google, Microsoft, Facebook, Apple, or Baidu, we are often interacting with a deep learning system. In this volume in the MIT Press Essential Knowledge series, computer scientist John Kelleher offers an accessible and concise but comprehensive introduction to the fundamental technology at the heart of the artificial intelligence revolution. Kelleher explains that deep learning enables data-driven decisions by identifying and extracting patterns from large datasets; its ability to learn from complex data makes deep learning ideally suited to take advantage of the rapid growth in big data and computational power. Kelleher also explains some of the basic concepts in deep learning, presents a history of advances in the field, and discusses the current state of the art. He describes the most important deep learning architectures, including autoencoders, recurrent neural networks, and long short-term networks, as well as such recent developments as Generative Adversarial Networks and capsule networks. He also provides a comprehensive (and comprehensible) introduction to the two fundamental algorithms in deep learning: gradient descent and backpropagation. Finally, Kelleher considers the future of deep learning—major trends, possible developments, and significant challenges.
Publisher: MIT Press
ISBN: 0262537559
Category : Computers
Languages : en
Pages : 298
Book Description
An accessible introduction to the artificial intelligence technology that enables computer vision, speech recognition, machine translation, and driverless cars. Deep learning is an artificial intelligence technology that enables computer vision, speech recognition in mobile phones, machine translation, AI games, driverless cars, and other applications. When we use consumer products from Google, Microsoft, Facebook, Apple, or Baidu, we are often interacting with a deep learning system. In this volume in the MIT Press Essential Knowledge series, computer scientist John Kelleher offers an accessible and concise but comprehensive introduction to the fundamental technology at the heart of the artificial intelligence revolution. Kelleher explains that deep learning enables data-driven decisions by identifying and extracting patterns from large datasets; its ability to learn from complex data makes deep learning ideally suited to take advantage of the rapid growth in big data and computational power. Kelleher also explains some of the basic concepts in deep learning, presents a history of advances in the field, and discusses the current state of the art. He describes the most important deep learning architectures, including autoencoders, recurrent neural networks, and long short-term networks, as well as such recent developments as Generative Adversarial Networks and capsule networks. He also provides a comprehensive (and comprehensible) introduction to the two fundamental algorithms in deep learning: gradient descent and backpropagation. Finally, Kelleher considers the future of deep learning—major trends, possible developments, and significant challenges.
Artificial Intelligence For Dummies
Author: John Paul Mueller
Publisher: John Wiley & Sons
ISBN: 1119467586
Category : Computers
Languages : en
Pages : 60
Book Description
Step into the future with AI The term "Artificial Intelligence" has been around since the 1950s, but a lot has changed since then. Today, AI is referenced in the news, books, movies, and TV shows, and the exact definition is often misinterpreted. Artificial Intelligence For Dummies provides a clear introduction to AI and how it’s being used today. Inside, you’ll get a clear overview of the technology, the common misconceptions surrounding it, and a fascinating look at its applications in everything from self-driving cars and drones to its contributions in the medical field. Learn about what AI has contributed to society Explore uses for AI in computer applications Discover the limits of what AI can do Find out about the history of AI The world of AI is fascinating—and this hands-on guide makes it more accessible than ever!
Publisher: John Wiley & Sons
ISBN: 1119467586
Category : Computers
Languages : en
Pages : 60
Book Description
Step into the future with AI The term "Artificial Intelligence" has been around since the 1950s, but a lot has changed since then. Today, AI is referenced in the news, books, movies, and TV shows, and the exact definition is often misinterpreted. Artificial Intelligence For Dummies provides a clear introduction to AI and how it’s being used today. Inside, you’ll get a clear overview of the technology, the common misconceptions surrounding it, and a fascinating look at its applications in everything from self-driving cars and drones to its contributions in the medical field. Learn about what AI has contributed to society Explore uses for AI in computer applications Discover the limits of what AI can do Find out about the history of AI The world of AI is fascinating—and this hands-on guide makes it more accessible than ever!