Author: Mettu Srinivas
Publisher: John Wiley & Sons
ISBN: 1119769248
Category : Computers
Languages : en
Pages : 372
Book Description
Machine Learning Algorithms is for current and ambitious machine learning specialists looking to implement solutions to real-world machine learning problems. It talks entirely about the various applications of machine and deep learning techniques, with each chapter dealing with a novel approach of machine learning architecture for a specific application, and then compares the results with previous algorithms. The book discusses many methods based in different fields, including statistics, pattern recognition, neural networks, artificial intelligence, sentiment analysis, control, and data mining, in order to present a unified treatment of machine learning problems and solutions. All learning algorithms are explained so that the user can easily move from the equations in the book to a computer program.
Machine Learning Algorithms and Applications
Author: Mettu Srinivas
Publisher: John Wiley & Sons
ISBN: 1119769248
Category : Computers
Languages : en
Pages : 372
Book Description
Machine Learning Algorithms is for current and ambitious machine learning specialists looking to implement solutions to real-world machine learning problems. It talks entirely about the various applications of machine and deep learning techniques, with each chapter dealing with a novel approach of machine learning architecture for a specific application, and then compares the results with previous algorithms. The book discusses many methods based in different fields, including statistics, pattern recognition, neural networks, artificial intelligence, sentiment analysis, control, and data mining, in order to present a unified treatment of machine learning problems and solutions. All learning algorithms are explained so that the user can easily move from the equations in the book to a computer program.
Publisher: John Wiley & Sons
ISBN: 1119769248
Category : Computers
Languages : en
Pages : 372
Book Description
Machine Learning Algorithms is for current and ambitious machine learning specialists looking to implement solutions to real-world machine learning problems. It talks entirely about the various applications of machine and deep learning techniques, with each chapter dealing with a novel approach of machine learning architecture for a specific application, and then compares the results with previous algorithms. The book discusses many methods based in different fields, including statistics, pattern recognition, neural networks, artificial intelligence, sentiment analysis, control, and data mining, in order to present a unified treatment of machine learning problems and solutions. All learning algorithms are explained so that the user can easily move from the equations in the book to a computer program.
Machine Learning
Author: Mohssen Mohammed
Publisher: CRC Press
ISBN: 1498705391
Category : Computers
Languages : en
Pages : 227
Book Description
Machine learning, one of the top emerging sciences, has an extremely broad range of applications. However, many books on the subject provide only a theoretical approach, making it difficult for a newcomer to grasp the subject material. This book provides a more practical approach by explaining the concepts of machine learning algorithms and describing the areas of application for each algorithm, using simple practical examples to demonstrate each algorithm and showing how different issues related to these algorithms are applied.
Publisher: CRC Press
ISBN: 1498705391
Category : Computers
Languages : en
Pages : 227
Book Description
Machine learning, one of the top emerging sciences, has an extremely broad range of applications. However, many books on the subject provide only a theoretical approach, making it difficult for a newcomer to grasp the subject material. This book provides a more practical approach by explaining the concepts of machine learning algorithms and describing the areas of application for each algorithm, using simple practical examples to demonstrate each algorithm and showing how different issues related to these algorithms are applied.
Machine Learning Algorithms for Problem Solving in Computational Applications: Intelligent Techniques
Author: Kulkarni, Siddhivinayak
Publisher: IGI Global
ISBN: 1466618345
Category : Computers
Languages : en
Pages : 464
Book Description
Machine learning is an emerging area of computer science that deals with the design and development of new algorithms based on various types of data. Machine Learning Algorithms for Problem Solving in Computational Applications: Intelligent Techniques addresses the complex realm of machine learning and its applications for solving various real-world problems in a variety of disciplines, such as manufacturing, business, information retrieval, and security. This premier reference source is essential for professors, researchers, and students in artificial intelligence as well as computer science and engineering.
Publisher: IGI Global
ISBN: 1466618345
Category : Computers
Languages : en
Pages : 464
Book Description
Machine learning is an emerging area of computer science that deals with the design and development of new algorithms based on various types of data. Machine Learning Algorithms for Problem Solving in Computational Applications: Intelligent Techniques addresses the complex realm of machine learning and its applications for solving various real-world problems in a variety of disciplines, such as manufacturing, business, information retrieval, and security. This premier reference source is essential for professors, researchers, and students in artificial intelligence as well as computer science and engineering.
Machine Learning Refined
Author: Jeremy Watt
Publisher: Cambridge University Press
ISBN: 1108480721
Category : Computers
Languages : en
Pages : 597
Book Description
An intuitive approach to machine learning covering key concepts, real-world applications, and practical Python coding exercises.
Publisher: Cambridge University Press
ISBN: 1108480721
Category : Computers
Languages : en
Pages : 597
Book Description
An intuitive approach to machine learning covering key concepts, real-world applications, and practical Python coding exercises.
Machine Learning and Big Data
Author: Uma N. Dulhare
Publisher: John Wiley & Sons
ISBN: 1119654742
Category : Computers
Languages : en
Pages : 544
Book Description
This book is intended for academic and industrial developers, exploring and developing applications in the area of big data and machine learning, including those that are solving technology requirements, evaluation of methodology advances and algorithm demonstrations. The intent of this book is to provide awareness of algorithms used for machine learning and big data in the academic and professional community. The 17 chapters are divided into 5 sections: Theoretical Fundamentals; Big Data and Pattern Recognition; Machine Learning: Algorithms & Applications; Machine Learning's Next Frontier and Hands-On and Case Study. While it dwells on the foundations of machine learning and big data as a part of analytics, it also focuses on contemporary topics for research and development. In this regard, the book covers machine learning algorithms and their modern applications in developing automated systems. Subjects covered in detail include: Mathematical foundations of machine learning with various examples. An empirical study of supervised learning algorithms like Naïve Bayes, KNN and semi-supervised learning algorithms viz. S3VM, Graph-Based, Multiview. Precise study on unsupervised learning algorithms like GMM, K-mean clustering, Dritchlet process mixture model, X-means and Reinforcement learning algorithm with Q learning, R learning, TD learning, SARSA Learning, and so forth. Hands-on machine leaning open source tools viz. Apache Mahout, H2O. Case studies for readers to analyze the prescribed cases and present their solutions or interpretations with intrusion detection in MANETS using machine learning. Showcase on novel user-cases: Implications of Electronic Governance as well as Pragmatic Study of BD/ML technologies for agriculture, healthcare, social media, industry, banking, insurance and so on.
Publisher: John Wiley & Sons
ISBN: 1119654742
Category : Computers
Languages : en
Pages : 544
Book Description
This book is intended for academic and industrial developers, exploring and developing applications in the area of big data and machine learning, including those that are solving technology requirements, evaluation of methodology advances and algorithm demonstrations. The intent of this book is to provide awareness of algorithms used for machine learning and big data in the academic and professional community. The 17 chapters are divided into 5 sections: Theoretical Fundamentals; Big Data and Pattern Recognition; Machine Learning: Algorithms & Applications; Machine Learning's Next Frontier and Hands-On and Case Study. While it dwells on the foundations of machine learning and big data as a part of analytics, it also focuses on contemporary topics for research and development. In this regard, the book covers machine learning algorithms and their modern applications in developing automated systems. Subjects covered in detail include: Mathematical foundations of machine learning with various examples. An empirical study of supervised learning algorithms like Naïve Bayes, KNN and semi-supervised learning algorithms viz. S3VM, Graph-Based, Multiview. Precise study on unsupervised learning algorithms like GMM, K-mean clustering, Dritchlet process mixture model, X-means and Reinforcement learning algorithm with Q learning, R learning, TD learning, SARSA Learning, and so forth. Hands-on machine leaning open source tools viz. Apache Mahout, H2O. Case studies for readers to analyze the prescribed cases and present their solutions or interpretations with intrusion detection in MANETS using machine learning. Showcase on novel user-cases: Implications of Electronic Governance as well as Pragmatic Study of BD/ML technologies for agriculture, healthcare, social media, industry, banking, insurance and so on.
Machine Learning Algorithms for Industrial Applications
Author: Santosh Kumar Das
Publisher: Springer Nature
ISBN: 303050641X
Category : Technology & Engineering
Languages : en
Pages : 321
Book Description
This book explores several problems and their solutions regarding data analysis and prediction for industrial applications. Machine learning is a prominent topic in modern industries: its influence can be felt in many aspects of everyday life, as the world rapidly embraces big data and data analytics. Accordingly, there is a pressing need for novel and innovative algorithms to help us find effective solutions in industrial application areas such as media, healthcare, travel, finance, and retail. In all of these areas, data is the crucial parameter, and the main key to unlocking the value of industry. The book presents a range of intelligent algorithms that can be used to filter useful information in the above-mentioned application areas and efficiently solve particular problems. Its main objective is to raise awareness for this important field among students, researchers, and industrial practitioners.
Publisher: Springer Nature
ISBN: 303050641X
Category : Technology & Engineering
Languages : en
Pages : 321
Book Description
This book explores several problems and their solutions regarding data analysis and prediction for industrial applications. Machine learning is a prominent topic in modern industries: its influence can be felt in many aspects of everyday life, as the world rapidly embraces big data and data analytics. Accordingly, there is a pressing need for novel and innovative algorithms to help us find effective solutions in industrial application areas such as media, healthcare, travel, finance, and retail. In all of these areas, data is the crucial parameter, and the main key to unlocking the value of industry. The book presents a range of intelligent algorithms that can be used to filter useful information in the above-mentioned application areas and efficiently solve particular problems. Its main objective is to raise awareness for this important field among students, researchers, and industrial practitioners.
Fundamentals and Methods of Machine and Deep Learning
Author: Pradeep Singh
Publisher: John Wiley & Sons
ISBN: 1119821886
Category : Computers
Languages : en
Pages : 480
Book Description
FUNDAMENTALS AND METHODS OF MACHINE AND DEEP LEARNING The book provides a practical approach by explaining the concepts of machine learning and deep learning algorithms, evaluation of methodology advances, and algorithm demonstrations with applications. Over the past two decades, the field of machine learning and its subfield deep learning have played a main role in software applications development. Also, in recent research studies, they are regarded as one of the disruptive technologies that will transform our future life, business, and the global economy. The recent explosion of digital data in a wide variety of domains, including science, engineering, Internet of Things, biomedical, healthcare, and many business sectors, has declared the era of big data, which cannot be analysed by classical statistics but by the more modern, robust machine learning and deep learning techniques. Since machine learning learns from data rather than by programming hard-coded decision rules, an attempt is being made to use machine learning to make computers that are able to solve problems like human experts in the field. The goal of this book is to present a??practical approach by explaining the concepts of machine learning and deep learning algorithms with applications. Supervised machine learning algorithms, ensemble machine learning algorithms, feature selection, deep learning techniques, and their applications are discussed. Also included in the eighteen chapters is unique information which provides a clear understanding of concepts by using algorithms and case studies illustrated with applications of machine learning and deep learning in different domains, including disease prediction, software defect prediction, online television analysis, medical image processing, etc. Each of the chapters briefly described below provides both a chosen approach and its implementation. Audience Researchers and engineers in artificial intelligence, computer scientists as well as software developers.
Publisher: John Wiley & Sons
ISBN: 1119821886
Category : Computers
Languages : en
Pages : 480
Book Description
FUNDAMENTALS AND METHODS OF MACHINE AND DEEP LEARNING The book provides a practical approach by explaining the concepts of machine learning and deep learning algorithms, evaluation of methodology advances, and algorithm demonstrations with applications. Over the past two decades, the field of machine learning and its subfield deep learning have played a main role in software applications development. Also, in recent research studies, they are regarded as one of the disruptive technologies that will transform our future life, business, and the global economy. The recent explosion of digital data in a wide variety of domains, including science, engineering, Internet of Things, biomedical, healthcare, and many business sectors, has declared the era of big data, which cannot be analysed by classical statistics but by the more modern, robust machine learning and deep learning techniques. Since machine learning learns from data rather than by programming hard-coded decision rules, an attempt is being made to use machine learning to make computers that are able to solve problems like human experts in the field. The goal of this book is to present a??practical approach by explaining the concepts of machine learning and deep learning algorithms with applications. Supervised machine learning algorithms, ensemble machine learning algorithms, feature selection, deep learning techniques, and their applications are discussed. Also included in the eighteen chapters is unique information which provides a clear understanding of concepts by using algorithms and case studies illustrated with applications of machine learning and deep learning in different domains, including disease prediction, software defect prediction, online television analysis, medical image processing, etc. Each of the chapters briefly described below provides both a chosen approach and its implementation. Audience Researchers and engineers in artificial intelligence, computer scientists as well as software developers.
Applications of Machine Learning
Author: Prashant Johri
Publisher: Springer Nature
ISBN: 9811533571
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
This book covers applications of machine learning in artificial intelligence. The specific topics covered include human language, heterogeneous and streaming data, unmanned systems, neural information processing, marketing and the social sciences, bioinformatics and robotics, etc. It also provides a broad range of techniques that can be successfully applied and adopted in different areas. Accordingly, the book offers an interesting and insightful read for scholars in the areas of computer vision, speech recognition, healthcare, business, marketing, and bioinformatics.
Publisher: Springer Nature
ISBN: 9811533571
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
This book covers applications of machine learning in artificial intelligence. The specific topics covered include human language, heterogeneous and streaming data, unmanned systems, neural information processing, marketing and the social sciences, bioinformatics and robotics, etc. It also provides a broad range of techniques that can be successfully applied and adopted in different areas. Accordingly, the book offers an interesting and insightful read for scholars in the areas of computer vision, speech recognition, healthcare, business, marketing, and bioinformatics.
Machine Learning
Author:
Publisher: BoD – Books on Demand
ISBN: 183969484X
Category : Computers
Languages : en
Pages : 153
Book Description
Recent times are witnessing rapid development in machine learning algorithm systems, especially in reinforcement learning, natural language processing, computer and robot vision, image processing, speech, and emotional processing and understanding. In tune with the increasing importance and relevance of machine learning models, algorithms, and their applications, and with the emergence of more innovative uses–cases of deep learning and artificial intelligence, the current volume presents a few innovative research works and their applications in real-world, such as stock trading, medical and healthcare systems, and software automation. The chapters in the book illustrate how machine learning and deep learning algorithms and models are designed, optimized, and deployed. The volume will be useful for advanced graduate and doctoral students, researchers, faculty members of universities, practicing data scientists and data engineers, professionals, and consultants working on the broad areas of machine learning, deep learning, and artificial intelligence.
Publisher: BoD – Books on Demand
ISBN: 183969484X
Category : Computers
Languages : en
Pages : 153
Book Description
Recent times are witnessing rapid development in machine learning algorithm systems, especially in reinforcement learning, natural language processing, computer and robot vision, image processing, speech, and emotional processing and understanding. In tune with the increasing importance and relevance of machine learning models, algorithms, and their applications, and with the emergence of more innovative uses–cases of deep learning and artificial intelligence, the current volume presents a few innovative research works and their applications in real-world, such as stock trading, medical and healthcare systems, and software automation. The chapters in the book illustrate how machine learning and deep learning algorithms and models are designed, optimized, and deployed. The volume will be useful for advanced graduate and doctoral students, researchers, faculty members of universities, practicing data scientists and data engineers, professionals, and consultants working on the broad areas of machine learning, deep learning, and artificial intelligence.
Machine Learning and Its Applications
Author: PETER. WLODARCZAK
Publisher: CRC Press
ISBN: 9781032086774
Category :
Languages : en
Pages : 188
Book Description
In recent years, machine learning has gained a lot of interest. Due to the advances in processor technology and the availability of large amounts of data, machine learning techniques have provided astounding results in areas such as object recognition or natural language processing. New approaches, e.g. deep learning, have provided groundbreaking outcomes in fields such as multimedia mining or voice recognition. Machine learning is now used in virtually every domain and deep learning algorithms are present in many devices such as smartphones, cars, drones, healthcare equipment, or smart home devices. The Internet, cloud computing and the Internet of Things produce a tsunami of data and machine learning provides the methods to effectively analyze the data and discover actionable knowledge. This book describes the most common machine learning techniques such as Bayesian models, support vector machines, decision tree induction, regression analysis, and recurrent and convolutional neural networks. It first gives an introduction into the principles of machine learning. It then covers the basic methods including the mathematical foundations. The biggest part of the book provides common machine learning algorithms and their applications. Finally, the book gives an outlook into some of the future developments and possible new research areas of machine learning and artificial intelligence in general. This book is meant to be an introduction into machine learning. It does not require prior knowledge in this area. It covers some of the basic mathematical principle but intends to be understandable even without a background in mathematics. It can be read chapter wise and intends to be comprehensible, even when not starting in the beginning. Finally, it also intends to be a reference book. Key Features: Describes real world problems that can be solved using Machine Learning Provides methods for directly applying Machine Learning techniques to concrete real world problems Demonstrates how to apply Machine Learning techniques using different frameworks such as TensorFlow, MALLET, R
Publisher: CRC Press
ISBN: 9781032086774
Category :
Languages : en
Pages : 188
Book Description
In recent years, machine learning has gained a lot of interest. Due to the advances in processor technology and the availability of large amounts of data, machine learning techniques have provided astounding results in areas such as object recognition or natural language processing. New approaches, e.g. deep learning, have provided groundbreaking outcomes in fields such as multimedia mining or voice recognition. Machine learning is now used in virtually every domain and deep learning algorithms are present in many devices such as smartphones, cars, drones, healthcare equipment, or smart home devices. The Internet, cloud computing and the Internet of Things produce a tsunami of data and machine learning provides the methods to effectively analyze the data and discover actionable knowledge. This book describes the most common machine learning techniques such as Bayesian models, support vector machines, decision tree induction, regression analysis, and recurrent and convolutional neural networks. It first gives an introduction into the principles of machine learning. It then covers the basic methods including the mathematical foundations. The biggest part of the book provides common machine learning algorithms and their applications. Finally, the book gives an outlook into some of the future developments and possible new research areas of machine learning and artificial intelligence in general. This book is meant to be an introduction into machine learning. It does not require prior knowledge in this area. It covers some of the basic mathematical principle but intends to be understandable even without a background in mathematics. It can be read chapter wise and intends to be comprehensible, even when not starting in the beginning. Finally, it also intends to be a reference book. Key Features: Describes real world problems that can be solved using Machine Learning Provides methods for directly applying Machine Learning techniques to concrete real world problems Demonstrates how to apply Machine Learning techniques using different frameworks such as TensorFlow, MALLET, R