Author: Hamid R. Rategh
Publisher: Springer Science & Business Media
ISBN: 0306481065
Category : Technology & Engineering
Languages : en
Pages : 157
Book Description
In the past 10 years extensive effort has been dedicated to commercial wireless local area network (WLAN) systems. Despite all these efforts, however, none of the existing systems has been successful, mainly due to their low data rates. The increasing demand for WLAN systems that can support data rates in excess of 20 Mb/s enticed the FCC to create an unlicensed national information infrastructure (U–NII) band at 5 GHz. This frequency band provides 300 MHz of spectrum in two segments: a 200 MHz(5.15–5.35 GHz) and a 100 MHz (5.725–5.825 GHz) frequency band. This newly released spectrum, and the fast trend of CMOS scaling, provide an opportunity to design WLAN systems with high data rate and low cost. One of the existing standards at 5 GHz is the European high performance radio LAN (HIPERLAN) standard that supports data rates as high as 20 Mb/s. One of the main building blocks of each wireless system is the f- quency synthesizer. Phase–locked loops (PLLs) are universally used to design radio frequency synthesizers. Reducing the power consumption of the frequency dividers of a PLL has always been a challenge. In this book, we introduce an alternative solution for conventional flipflop based xiv MULTI–GHZ FREQUENCY SYNTHESIS & DIVISION frequency dividers. An injection–locked frequency divider (ILFD) takes advantage of the narrowband nature of the wireless systems and employs resonators to trade off bandwidth for power.
Multi-GHz Frequency Synthesis & Division
Author: Hamid R. Rategh
Publisher: Springer Science & Business Media
ISBN: 0306481065
Category : Technology & Engineering
Languages : en
Pages : 157
Book Description
In the past 10 years extensive effort has been dedicated to commercial wireless local area network (WLAN) systems. Despite all these efforts, however, none of the existing systems has been successful, mainly due to their low data rates. The increasing demand for WLAN systems that can support data rates in excess of 20 Mb/s enticed the FCC to create an unlicensed national information infrastructure (U–NII) band at 5 GHz. This frequency band provides 300 MHz of spectrum in two segments: a 200 MHz(5.15–5.35 GHz) and a 100 MHz (5.725–5.825 GHz) frequency band. This newly released spectrum, and the fast trend of CMOS scaling, provide an opportunity to design WLAN systems with high data rate and low cost. One of the existing standards at 5 GHz is the European high performance radio LAN (HIPERLAN) standard that supports data rates as high as 20 Mb/s. One of the main building blocks of each wireless system is the f- quency synthesizer. Phase–locked loops (PLLs) are universally used to design radio frequency synthesizers. Reducing the power consumption of the frequency dividers of a PLL has always been a challenge. In this book, we introduce an alternative solution for conventional flipflop based xiv MULTI–GHZ FREQUENCY SYNTHESIS & DIVISION frequency dividers. An injection–locked frequency divider (ILFD) takes advantage of the narrowband nature of the wireless systems and employs resonators to trade off bandwidth for power.
Publisher: Springer Science & Business Media
ISBN: 0306481065
Category : Technology & Engineering
Languages : en
Pages : 157
Book Description
In the past 10 years extensive effort has been dedicated to commercial wireless local area network (WLAN) systems. Despite all these efforts, however, none of the existing systems has been successful, mainly due to their low data rates. The increasing demand for WLAN systems that can support data rates in excess of 20 Mb/s enticed the FCC to create an unlicensed national information infrastructure (U–NII) band at 5 GHz. This frequency band provides 300 MHz of spectrum in two segments: a 200 MHz(5.15–5.35 GHz) and a 100 MHz (5.725–5.825 GHz) frequency band. This newly released spectrum, and the fast trend of CMOS scaling, provide an opportunity to design WLAN systems with high data rate and low cost. One of the existing standards at 5 GHz is the European high performance radio LAN (HIPERLAN) standard that supports data rates as high as 20 Mb/s. One of the main building blocks of each wireless system is the f- quency synthesizer. Phase–locked loops (PLLs) are universally used to design radio frequency synthesizers. Reducing the power consumption of the frequency dividers of a PLL has always been a challenge. In this book, we introduce an alternative solution for conventional flipflop based xiv MULTI–GHZ FREQUENCY SYNTHESIS & DIVISION frequency dividers. An injection–locked frequency divider (ILFD) takes advantage of the narrowband nature of the wireless systems and employs resonators to trade off bandwidth for power.
Low-Voltage CMOS RF Frequency Synthesizers
Author: Howard Cam Luong
Publisher: Cambridge University Press
ISBN: 1139454579
Category : Technology & Engineering
Languages : en
Pages : 200
Book Description
A frequency synthesizer is one of the most critical building blocks in any wireless transceiver system. Its design is getting more and more challenging as the demand for low-voltage low-power high-frequency wireless systems continuously grows. As the supply voltage is decreased, many existing design techniques are no longer applicable. This book provides the reader with architectures and design techniques to enable CMOS frequency synthesizers to operate at low supply voltage at high frequency with good phase noise and low power consumption. In addition to updating the reader on many of these techniques in depth, this book will also introduce useful guidelines and step-by-step procedure on behaviour simulations of frequency synthesizers. Finally, three successfully demonstrated CMOS synthesizer prototypes with detailed design consideration and description will be elaborated to illustrate potential applications of the architectures and design techniques described. For engineers, managers and researchers working in radio-frequency integrated-circuit design for wireless applications.
Publisher: Cambridge University Press
ISBN: 1139454579
Category : Technology & Engineering
Languages : en
Pages : 200
Book Description
A frequency synthesizer is one of the most critical building blocks in any wireless transceiver system. Its design is getting more and more challenging as the demand for low-voltage low-power high-frequency wireless systems continuously grows. As the supply voltage is decreased, many existing design techniques are no longer applicable. This book provides the reader with architectures and design techniques to enable CMOS frequency synthesizers to operate at low supply voltage at high frequency with good phase noise and low power consumption. In addition to updating the reader on many of these techniques in depth, this book will also introduce useful guidelines and step-by-step procedure on behaviour simulations of frequency synthesizers. Finally, three successfully demonstrated CMOS synthesizer prototypes with detailed design consideration and description will be elaborated to illustrate potential applications of the architectures and design techniques described. For engineers, managers and researchers working in radio-frequency integrated-circuit design for wireless applications.
Fast Hopping Frequency Generation in Digital CMOS
Author: Mohammad Farazian
Publisher: Springer Science & Business Media
ISBN: 1461404908
Category : Technology & Engineering
Languages : en
Pages : 158
Book Description
Overcoming the agility limitations of conventional frequency synthesizers in multi-band OFDM ultra wideband is a key research goal in digital technology. This volume outlines a frequency plan that can generate all the required frequencies from a single fixed frequency, able to implement center frequencies with no more than two levels of SSB mixing. It recognizes the need for future synthesizers to bypass on-chip inductors and operate at low voltages to enable the increased integration and efficiency of networked appliances. The author examines in depth the architecture of the dividers that generate the necessary frequencies from a single base frequency and are capable of establishing a fractional division ratio. Presenting the first CMOS inductorless single PLL 14-band frequency synthesizer for MB-OFDMUWB makes this volume a key addition to the literature, and with the synthesizer capable of arbitrary band-hopping in less than two nanoseconds, it operates well within the desired range on a 1.2-volt power supply. The author’s close analysis of the operation, stability, and phase noise of injection-locked regenerative frequency dividers will provide researchers and technicians with much food for developmental thought.
Publisher: Springer Science & Business Media
ISBN: 1461404908
Category : Technology & Engineering
Languages : en
Pages : 158
Book Description
Overcoming the agility limitations of conventional frequency synthesizers in multi-band OFDM ultra wideband is a key research goal in digital technology. This volume outlines a frequency plan that can generate all the required frequencies from a single fixed frequency, able to implement center frequencies with no more than two levels of SSB mixing. It recognizes the need for future synthesizers to bypass on-chip inductors and operate at low voltages to enable the increased integration and efficiency of networked appliances. The author examines in depth the architecture of the dividers that generate the necessary frequencies from a single base frequency and are capable of establishing a fractional division ratio. Presenting the first CMOS inductorless single PLL 14-band frequency synthesizer for MB-OFDMUWB makes this volume a key addition to the literature, and with the synthesizer capable of arbitrary band-hopping in less than two nanoseconds, it operates well within the desired range on a 1.2-volt power supply. The author’s close analysis of the operation, stability, and phase noise of injection-locked regenerative frequency dividers will provide researchers and technicians with much food for developmental thought.
Dissertation Abstracts International
Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 960
Book Description
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 960
Book Description
American Doctoral Dissertations
Author:
Publisher:
ISBN:
Category : Dissertation abstracts
Languages : en
Pages : 776
Book Description
Publisher:
ISBN:
Category : Dissertation abstracts
Languages : en
Pages : 776
Book Description
Wireless Technologies
Author: Krzysztof Iniewski
Publisher: CRC Press
ISBN: 0849379970
Category : Technology & Engineering
Languages : en
Pages : 696
Book Description
Advanced concepts for wireless technologies present a vision of technology that is embedded in our surroundings and practically invisible. From established radio techniques like GSM, 802.11 or Bluetooth to more emerging technologies, such as Ultra Wide Band and smart dust motes, a common denominator for future progress is the underlying integrated circuit technology. Wireless Technologies responds to the explosive growth of standard cellular radios and radically different wireless applications by presenting new architectural and circuit solutions engineers can use to solve modern design problems. This reference addresses state-of-the art CMOS design in the context of emerging wireless applications, including 3G/4G cellular telephony, wireless sensor networks, and wireless medical application. Written by top international experts specializing in both the IC industry and academia, this carefully edited work uncovers new design opportunities in body area networks, medical implants, satellite communications, automobile radar detection, and wearable electronics. The book is divided into three sections: wireless system perspectives, chip architecture and implementation issues, and devices and technologies used to fabricate wireless integrated circuits. Contributors address key issues in the development of future silicon-based systems, such as scale of integration, ultra-low power dissipation, and the integration of heterogeneous circuit design style and processes onto one substrate. Wireless sensor network systems are now being applied in critical applications in commerce, healthcare, and security. This reference, which contains 25 practical and scientifically rigorous articles, provides the knowledge communications engineers need to design innovative methodologies at the circuit and system level.
Publisher: CRC Press
ISBN: 0849379970
Category : Technology & Engineering
Languages : en
Pages : 696
Book Description
Advanced concepts for wireless technologies present a vision of technology that is embedded in our surroundings and practically invisible. From established radio techniques like GSM, 802.11 or Bluetooth to more emerging technologies, such as Ultra Wide Band and smart dust motes, a common denominator for future progress is the underlying integrated circuit technology. Wireless Technologies responds to the explosive growth of standard cellular radios and radically different wireless applications by presenting new architectural and circuit solutions engineers can use to solve modern design problems. This reference addresses state-of-the art CMOS design in the context of emerging wireless applications, including 3G/4G cellular telephony, wireless sensor networks, and wireless medical application. Written by top international experts specializing in both the IC industry and academia, this carefully edited work uncovers new design opportunities in body area networks, medical implants, satellite communications, automobile radar detection, and wearable electronics. The book is divided into three sections: wireless system perspectives, chip architecture and implementation issues, and devices and technologies used to fabricate wireless integrated circuits. Contributors address key issues in the development of future silicon-based systems, such as scale of integration, ultra-low power dissipation, and the integration of heterogeneous circuit design style and processes onto one substrate. Wireless sensor network systems are now being applied in critical applications in commerce, healthcare, and security. This reference, which contains 25 practical and scientifically rigorous articles, provides the knowledge communications engineers need to design innovative methodologies at the circuit and system level.
Extreme Low-Power Mixed Signal IC Design
Author: Armin Tajalli
Publisher: Springer Science & Business Media
ISBN: 1441964789
Category : Technology & Engineering
Languages : en
Pages : 300
Book Description
Design exibility and power consumption in addition to the cost, have always been the most important issues in design of integrated circuits (ICs), and are the main concerns of this research, as well. Energy Consumptions: Power dissipation (P ) and energy consumption are - diss pecially importantwhen there is a limited amountof power budgetor limited source of energy. Very common examples are portable systems where the battery life time depends on system power consumption. Many different techniques have been - veloped to reduce or manage the circuit power consumption in this type of systems. Ultra-low power (ULP) applications are another examples where power dissipation is the primary design issue. In such applications, the power budget is so restricted that very special circuit and system level design techniquesare needed to satisfy the requirements. Circuits employed in applications such as wireless sensor networks (WSN), wearable battery powered systems [1], and implantable circuits for biol- ical applications need to consume very low amount of power such that the entire system can survive for a very long time without the need for changingor recharging battery[2–4]. Using newpowersupplytechniquessuchas energyharvesting[5]and printable batteries [6], is another reason for reducing power dissipation. Devel- ing special design techniques for implementing low power circuits [7–9], as well as dynamic power management (DPM) schemes [10] are the two main approaches to control the system power consumption. Design Flexibility: Design exibility is the other important issue in modern in- grated systems.
Publisher: Springer Science & Business Media
ISBN: 1441964789
Category : Technology & Engineering
Languages : en
Pages : 300
Book Description
Design exibility and power consumption in addition to the cost, have always been the most important issues in design of integrated circuits (ICs), and are the main concerns of this research, as well. Energy Consumptions: Power dissipation (P ) and energy consumption are - diss pecially importantwhen there is a limited amountof power budgetor limited source of energy. Very common examples are portable systems where the battery life time depends on system power consumption. Many different techniques have been - veloped to reduce or manage the circuit power consumption in this type of systems. Ultra-low power (ULP) applications are another examples where power dissipation is the primary design issue. In such applications, the power budget is so restricted that very special circuit and system level design techniquesare needed to satisfy the requirements. Circuits employed in applications such as wireless sensor networks (WSN), wearable battery powered systems [1], and implantable circuits for biol- ical applications need to consume very low amount of power such that the entire system can survive for a very long time without the need for changingor recharging battery[2–4]. Using newpowersupplytechniquessuchas energyharvesting[5]and printable batteries [6], is another reason for reducing power dissipation. Devel- ing special design techniques for implementing low power circuits [7–9], as well as dynamic power management (DPM) schemes [10] are the two main approaches to control the system power consumption. Design Flexibility: Design exibility is the other important issue in modern in- grated systems.
All-Digital Frequency Synthesizer in Deep-Submicron CMOS
Author: Robert Bogdan Staszewski
Publisher: John Wiley & Sons
ISBN: 0470041943
Category : Technology & Engineering
Languages : en
Pages : 281
Book Description
A new and innovative paradigm for RF frequency synthesis and wireless transmitter design Learn the techniques for designing and implementing an all-digital RF frequency synthesizer. In contrast to traditional RF techniques, this innovative book sets forth digitally intensive design techniques that lead the way to the development of low-cost, low-power, and highly integrated circuits for RF functions in deep submicron CMOS processes. Furthermore, the authors demonstrate how the architecture enables readers to integrate an RF front-end with the digital back-end onto a single silicon die using standard ASIC design flow. Taking a bottom-up approach that progressively builds skills and knowledge, the book begins with an introduction to basic concepts of frequency synthesis and then guides the reader through an all-digital RF frequency synthesizer design: Chapter 2 presents a digitally controlled oscillator (DCO), which is the foundation of a novel architecture, and introduces a time-domain model used for analysis and VHDL simulation Chapter 3 adds a hierarchical layer of arithmetic abstraction to the DCO that makes it easier to operate algorithmically Chapter 4 builds a phase correction mechanism around the DCO such that the system's frequency drift or wander performance matches that of the stable external frequency reference Chapter 5 presents an application of the all-digital RF synthesizer Chapter 6 describes the behavioral modeling and simulation methodology used in design The final chapter presents the implementation of a full transmitter and experimental results. The novel ideas presented here have been implemented and proven in two high-volume, commercial single-chip radios developed at Texas Instruments: Bluetooth and GSM. While the focus of the book is on RF frequency synthesizer design, the techniques can be applied to the design of other digitally assisted analog circuits as well. This book is a must-read for students and engineers who want to learn a new paradigm for RF frequency synthesis and wireless transmitter design using digitally intensive design techniques.
Publisher: John Wiley & Sons
ISBN: 0470041943
Category : Technology & Engineering
Languages : en
Pages : 281
Book Description
A new and innovative paradigm for RF frequency synthesis and wireless transmitter design Learn the techniques for designing and implementing an all-digital RF frequency synthesizer. In contrast to traditional RF techniques, this innovative book sets forth digitally intensive design techniques that lead the way to the development of low-cost, low-power, and highly integrated circuits for RF functions in deep submicron CMOS processes. Furthermore, the authors demonstrate how the architecture enables readers to integrate an RF front-end with the digital back-end onto a single silicon die using standard ASIC design flow. Taking a bottom-up approach that progressively builds skills and knowledge, the book begins with an introduction to basic concepts of frequency synthesis and then guides the reader through an all-digital RF frequency synthesizer design: Chapter 2 presents a digitally controlled oscillator (DCO), which is the foundation of a novel architecture, and introduces a time-domain model used for analysis and VHDL simulation Chapter 3 adds a hierarchical layer of arithmetic abstraction to the DCO that makes it easier to operate algorithmically Chapter 4 builds a phase correction mechanism around the DCO such that the system's frequency drift or wander performance matches that of the stable external frequency reference Chapter 5 presents an application of the all-digital RF synthesizer Chapter 6 describes the behavioral modeling and simulation methodology used in design The final chapter presents the implementation of a full transmitter and experimental results. The novel ideas presented here have been implemented and proven in two high-volume, commercial single-chip radios developed at Texas Instruments: Bluetooth and GSM. While the focus of the book is on RF frequency synthesizer design, the techniques can be applied to the design of other digitally assisted analog circuits as well. This book is a must-read for students and engineers who want to learn a new paradigm for RF frequency synthesis and wireless transmitter design using digitally intensive design techniques.
Digitally-Assisted Analog and RF CMOS Circuit Design for Software-Defined Radio
Author: Kenichi Okada
Publisher: Springer Science & Business Media
ISBN: 144198514X
Category : Technology & Engineering
Languages : en
Pages : 224
Book Description
This book describes the state-of-the-art in RF, analog, and mixed-signal circuit design for Software Defined Radio (SDR). It synthesizes for analog/RF circuit designers the most important general design approaches to take advantage of the most recent CMOS technology, which can integrate millions of transistors, as well as several real examples from the most recent research results.
Publisher: Springer Science & Business Media
ISBN: 144198514X
Category : Technology & Engineering
Languages : en
Pages : 224
Book Description
This book describes the state-of-the-art in RF, analog, and mixed-signal circuit design for Software Defined Radio (SDR). It synthesizes for analog/RF circuit designers the most important general design approaches to take advantage of the most recent CMOS technology, which can integrate millions of transistors, as well as several real examples from the most recent research results.
Index to IEEE Publications
Author: Institute of Electrical and Electronics Engineers
Publisher:
ISBN:
Category : Electrical engineering
Languages : en
Pages : 1468
Book Description
Publisher:
ISBN:
Category : Electrical engineering
Languages : en
Pages : 1468
Book Description