LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES.

LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. An iterative process of simulation, experimentation and analysis, are being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and ring-design concepts have been explored, and engine experiments have been done on a full-scale Waukesha VGF F18 in-line 6 cylinder power generation engine rated at 370 kW at 1800 rpm. Current accomplishments include designing and testing ring-packs using a subtle top-compression-ring profile (skewed barrel design), lowering the tension of the oil-control ring, employing a negative twist to the scraper ring to control oil consumption. Initial test data indicate that piston ring-pack friction was reduced by 35% by lowering the oil-control ring tension alone, which corresponds to a 1.5% improvement in fuel efficiency. Although small in magnitude, this improvement represents a first step towards anticipated aggregate improvements from other strategies. Other ring-pack design strategies to lower friction have been identified, including reduced axial distance between the top two rings, tilted top-ring groove. Some of these configurations have been tested and some await further evaluation. Colorado State University performed the tests and Waukesha Engine Dresser, Inc. provided technical support. Key elements of the continuing work include optimizing the engine piston design, application of surface and material developments in conjunction with improved lubricant properties, system modeling and analysis, and continued technology demonstration in an actual full-sized reciprocating natural-gas engine.

LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES.

LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES. PDF Author: Victor Wong
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships between design parameters and friction losses. Low friction ring designs have already been recommended in a previous phase, with full-scale engine validation partially completed. Current accomplishments include the addition of several additional power cylinder design areas to the overall system analysis. These include analyses of lubricant and cylinder surface finish and a parametric study of piston design. The Waukesha engine was found to be already well optimized in the areas of lubricant, surface skewness and honing cross-hatch angle, where friction reductions of 12% for lubricant, and 5% for surface characteristics, are projected. For the piston, a friction reduction of up to 50% may be possible by controlling waviness alone, while additional friction reductions are expected when other parameters are optimized. A total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% efficiency. Key elements of the continuing work include further analysis and optimization of the engine piston design, in-engine testing of recommended lubricant and surface designs, design iteration and optimization of previously recommended technologies, and full-engine testing of a complete, optimized, low-friction power cylinder system.

LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES.

LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES. PDF Author: Victor W. Wong
Publisher:
ISBN:
Category :
Languages : en
Pages : 23

Get Book Here

Book Description
This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. A detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and concepts have been explored, and engine experiments will validate these concepts. An iterative process of experimentation, simulation and analysis, will be followed with the goal of demonstrating a complete optimized low-friction engine system. As planned, MIT has developed guidelines for an initial set of low-friction piston-ring-pack designs. Current recommendations focus on subtle top-piston-ring and oil-control-ring characteristics. A full-scale Waukesha F18 engine has been installed at Colorado State University and testing of the baseline configuration is in progress. Components for the first design iteration are being procured. Subsequent work includes examining the friction and engine performance data and extending the analyses to other areas to evaluate opportunities for further friction improvement and the impact on oil consumption/emission and wear, towards demonstrating an optimized reduced-friction engine system.

Advanced Natural Gas Reciprocating Engine(s).

Advanced Natural Gas Reciprocating Engine(s). PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 - 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cycle efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.

Advanced Tribology

Advanced Tribology PDF Author: Jianbin Luo
Publisher: Springer Science & Business Media
ISBN: 3642036538
Category : Technology & Engineering
Languages : en
Pages : 1040

Get Book Here

Book Description
"Advanced Tribology" is the proceedings of the 5th China International Symposium on Tribology (held every four years) and the 1st International Tribology Symposium of IFToMM, held in Beijing 24th-27th September 2008. It contains seven parts: lubrication; friction and wear; micro/nano-tribology; tribology of coatings, surface and interface; biotribology; tribo-chemistry; industry tribology. The book reflects the recent progress in the fields such as lubrication, friction and wear, coatings, and precision manufacture etc. in the world. The book is intended for researchers, engineers and graduate students in the field of tribology, lubrication, mechanical production and industrial design. The editors Jianbin Luo, Yonggang Meng, Tianmin Shao and Qian Zhao are all the professors at the State Key Lab of Tribology, Tsinghua University, Beijing.

Advanced Natural Gas Reciprocating Engine

Advanced Natural Gas Reciprocating Engine PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This report presents results of our investigation on parasitic loss control through surface modification in reciprocating engine. In order to achieve the objectives several experimental and corresponding analytical models were designed and developed to corroborate our results. Four different test rigs were designed and developed to simulate the contact between the piston ring and cylinder liner (PRCL) contact. The Reciprocating Piston Test Rig (RPTR) is a novel suspended liner test apparatus which can be used to accurately measure the friction force and side load at the piston-cylinder interface. A mixed lubrication model for the complete ring-pack and piston skirt was developed to correlate with the experimental measurements. Comparisons between the experimental and analytical results showed good agreement. The results revealed that in the reciprocating engines higher friction occur near TDC and BDC of the stroke due to the extremely low piston speed resulting in boundary lubrication. A Small Engine Dynamometer Test Rig was also designed and developed to enable testing of cylinder liner under motored and fired conditions. Results of this study provide a baseline from which to measure the effect of surface modifications. The Pin on Disk Test Rig (POD) was used in a flat-on-flat configuration to study the friction effect of CNC machining circular pockets and laser micro-dimples. The results show that large and shallow circular pockets resulted in significant friction reduction. Deep circular pockets did not provide much load support. The Reciprocating Liner Test Rig (RLTR) was designed to simplifying the contact at the PRCL interface. Accurate measurement of friction was obtained using 3-axis piezoelectric force transducer. Two fiber optic sensors were used to measure the film thickness precisely. The results show that the friction force is reduced through the use of modified surfaces. The Shear Driven Test Rig (SDTR) was designed to simulate the mechanism of the piston ring pass through the liner. Micro PIV system was provided to observing the flow of lubricant in the cavity (pocket). The Vorticity-Stream Function Code was developed to simulate the incompressible fluid flow in the rectangular cavity.

Critical Component Wear in Heavy Duty Engines

Critical Component Wear in Heavy Duty Engines PDF Author: P. A. Lakshminarayanan
Publisher: John Wiley & Sons
ISBN: 0470828854
Category : Technology & Engineering
Languages : en
Pages : 464

Get Book Here

Book Description
The critical parts of a heavy duty engine are theoretically designed for infinite life without mechanical fatigue failure. Yet the life of an engine is in reality determined by wear of the critical parts. Even if an engine is designed and built to have normal wear life, abnormal wear takes place either due to special working conditions or increased loading. Understanding abnormal and normal wear enables the engineer to control the external conditions leading to premature wear, or to design the critical parts that have longer wear life and hence lower costs. The literature on wear phenomenon related to engines is scattered in numerous periodicals and books. For the first time, Lakshminarayanan and Nayak bring the tribological aspects of different critical engine components together in one volume, covering key components like the liner, piston, rings, valve, valve train and bearings, with methods to identify and quantify wear. The first book to combine solutions to critical component wear in one volume Presents real world case studies with suitable mathematical models for earth movers, power generators, and sea going vessels Includes material from researchers at Schaeffer Manufacturing (USA), Tekniker (Spain), Fuchs (Germany), BAM (Germany), Kirloskar Oil Engines Ltd (India) and Tarabusi (Spain) Wear simulations and calculations included in the appendices Instructor presentations slides with book figures available from the companion site Critical Component Wear in Heavy Duty Engines is aimed at postgraduates in automotive engineering, engine design, tribology, combustion and practitioners involved in engine R&D for applications such as commercial vehicles, cars, stationary engines (for generators, pumps, etc.), boats and ships. This book is also a key reference for senior undergraduates looking to move onto advanced study in the above topics, consultants and product mangers in industry, as well as engineers involved in design of furnaces, gas turbines, and rocket combustion. Companion website for the book: www.wiley.com/go/lakshmi

Tribology and Dynamics of Engine and Powertrain

Tribology and Dynamics of Engine and Powertrain PDF Author: Homer Rahnejat
Publisher: Elsevier
ISBN: 1845699939
Category : Technology & Engineering
Languages : en
Pages : 1059

Get Book Here

Book Description
Tribology, the science of friction, wear and lubrication, is one of the cornerstones of engineering’s quest for efficiency and conservation of resources. Tribology and dynamics of engine and powertrain: fundamentals, applications and future trends provides an authoritative and comprehensive overview of the disciplines of dynamics and tribology using a multi-physics and multi-scale approach to improve automotive engine and powertrain technology.Part one reviews the fundamental aspects of the physics of motion, particularly the multi-body approach to multi-physics, multi-scale problem solving in tribology. Fundamental issues in tribology are then described in detail,from surface phenomena in thin-film tribology, to impact dynamics, fluid film and elastohydrodynamic lubrication means of measurement and evaluation. These chapters provide an understanding of the theoretical foundation for Part II which includes many aspects of the physics of motion at a multitude of interaction scales from large displacement dynamics to noise and vibration tribology, all of which affect engines and powertrains. Many chapters are contributed by well-established practitioners disseminating their valuable knowledge and expertise on specific engine and powertrain sub-systems. These include overviews of engine and powertrain issues, engine bearings, piston systems, valve trains, transmission and many aspects of drivetrain systems. The final part of the book considers the emerging areas of microengines and gears as well as nano-scale surface engineering.With its distinguished editor and international team of academic and industry contributors, Tribology and dynamics of engine and powertrain is a standard work for automotive engineers and all those researching NVH and tribological issues in engineering. Reviews fundamental aspects of physics in motion, specifically the multi-body approach to multi physics Describes essential issues in tribology from surface phenomena in thin film tribology to impact dynamics Examines specific engine and powertrain sub-systems including engine bearings, piston systems and value trains

Energy and Water Development Appropriations for 2006: Dept. of the Army, Corps of Engineers

Energy and Water Development Appropriations for 2006: Dept. of the Army, Corps of Engineers PDF Author: United States. Congress. House. Committee on Appropriations. Subcommittee on Energy and Water Development
Publisher:
ISBN:
Category : Federal aid to energy development
Languages : en
Pages : 1928

Get Book Here

Book Description


Proceedings of the FISITA 2012 World Automotive Congress

Proceedings of the FISITA 2012 World Automotive Congress PDF Author: SAE-China
Publisher: Springer Science & Business Media
ISBN: 3642338410
Category : Technology & Engineering
Languages : en
Pages : 805

Get Book Here

Book Description
'Proceedings of the FISITA 2012 World Automotive Congress' are selected from nearly 2,000 papers submitted to the 34th FISITA World Automotive Congress, which is held by Society of Automotive Engineers of China (SAE-China ) and the International Federation of Automotive Engineering Societies (FISITA). This proceedings focus on solutions for sustainable mobility in all areas of passenger car, truck and bus transportation. Volume 1: Advanced Internal Combustion Engines (I) focuses on: •New Gasoline Direct Injection(GDI), Spark Ignition(SI)&Compression Ignition(CI) Engines and Components •Fuel Injection and Sprays •Fuel and Lubricants •After-Treatment and Emission Control Above all researchers, professional engineers and graduates in fields of automotive engineering, mechanical engineering and electronic engineering will benefit from this book. SAE-China is a national academic organization composed of enterprises and professionals who focus on research, design and education in the fields of automotive and related industries. FISITA is the umbrella organization for the national automotive societies in 37 countries around the world. It was founded in Paris in 1948 with the purpose of bringing engineers from around the world together in a spirit of cooperation to share ideas and advance the technological development of the automobile.