Author: John J. McArdle
Publisher: American Psychological Association (APA)
ISBN: 9781433817151
Category : Mathematics
Languages : en
Pages : 426
Book Description
When determining the most appropriate method for analyzing longitudinal data, you must first consider what research question you want to answer. McArdle and Nesselroade identify five basic purposes of longitudinal structural equation modeling. For each purpose, they present the most useful strategies and models. Two important but underused approaches are emphasized: multiple factorial invariance over time and latent change scores. This volume covers a wealth of models in a straightforward, understandable manner. Rather than overwhelm the reader with an extensive amount of algebra, the authors use path diagrams and emphasize methods that are appropriate for many uses. Book jacket.
Longitudinal Data Analysis Using Structural Equation Models
Author: John J. McArdle
Publisher: American Psychological Association (APA)
ISBN: 9781433817151
Category : Mathematics
Languages : en
Pages : 426
Book Description
When determining the most appropriate method for analyzing longitudinal data, you must first consider what research question you want to answer. McArdle and Nesselroade identify five basic purposes of longitudinal structural equation modeling. For each purpose, they present the most useful strategies and models. Two important but underused approaches are emphasized: multiple factorial invariance over time and latent change scores. This volume covers a wealth of models in a straightforward, understandable manner. Rather than overwhelm the reader with an extensive amount of algebra, the authors use path diagrams and emphasize methods that are appropriate for many uses. Book jacket.
Publisher: American Psychological Association (APA)
ISBN: 9781433817151
Category : Mathematics
Languages : en
Pages : 426
Book Description
When determining the most appropriate method for analyzing longitudinal data, you must first consider what research question you want to answer. McArdle and Nesselroade identify five basic purposes of longitudinal structural equation modeling. For each purpose, they present the most useful strategies and models. Two important but underused approaches are emphasized: multiple factorial invariance over time and latent change scores. This volume covers a wealth of models in a straightforward, understandable manner. Rather than overwhelm the reader with an extensive amount of algebra, the authors use path diagrams and emphasize methods that are appropriate for many uses. Book jacket.
Longitudinal Structural Equation Modeling
Author: Todd D. Little
Publisher: Guilford Press
ISBN: 1462510272
Category : Psychology
Languages : en
Pages : 411
Book Description
This book has been replaced by Longitudinal Structural Equation Modeling, Second Edition, ISBN 978-1-4625-5314-3.
Publisher: Guilford Press
ISBN: 1462510272
Category : Psychology
Languages : en
Pages : 411
Book Description
This book has been replaced by Longitudinal Structural Equation Modeling, Second Edition, ISBN 978-1-4625-5314-3.
Longitudinal Structural Equation Modeling with Mplus
Author: Christian Geiser
Publisher: Guilford Publications
ISBN: 1462546412
Category : Social Science
Languages : en
Pages : 370
Book Description
An in-depth guide to executing longitudinal confirmatory factor analysis (CFA) and structural equation modeling (SEM) in Mplus, this book uses latent state–trait (LST) theory as a unifying conceptual framework, including the relevant coefficients of consistency, occasion specificity, and reliability. Following a standard format, chapters review the theoretical underpinnings, strengths, and limitations of the various models; present data examples; and demonstrate each model's application and interpretation in Mplus, with numerous screen shots and output excerpts. Coverage encompasses both traditional models (autoregressive, change score, and growth curve models) and LST models for analyzing single- and multiple-indicator data. The book discusses measurement equivalence testing, intensive longitudinal data modeling, and missing data handling, and provides strategies for model selection and reporting of results. User-friendly features include special-topic boxes, chapter summaries, and suggestions for further reading. The companion website features data sets, annotated syntax files, and output for all of the examples.
Publisher: Guilford Publications
ISBN: 1462546412
Category : Social Science
Languages : en
Pages : 370
Book Description
An in-depth guide to executing longitudinal confirmatory factor analysis (CFA) and structural equation modeling (SEM) in Mplus, this book uses latent state–trait (LST) theory as a unifying conceptual framework, including the relevant coefficients of consistency, occasion specificity, and reliability. Following a standard format, chapters review the theoretical underpinnings, strengths, and limitations of the various models; present data examples; and demonstrate each model's application and interpretation in Mplus, with numerous screen shots and output excerpts. Coverage encompasses both traditional models (autoregressive, change score, and growth curve models) and LST models for analyzing single- and multiple-indicator data. The book discusses measurement equivalence testing, intensive longitudinal data modeling, and missing data handling, and provides strategies for model selection and reporting of results. User-friendly features include special-topic boxes, chapter summaries, and suggestions for further reading. The companion website features data sets, annotated syntax files, and output for all of the examples.
Longitudinal Data Analysis
Author: Garrett Fitzmaurice
Publisher: CRC Press
ISBN: 142001157X
Category : Mathematics
Languages : en
Pages : 633
Book Description
Although many books currently available describe statistical models and methods for analyzing longitudinal data, they do not highlight connections between various research threads in the statistical literature. Responding to this void, Longitudinal Data Analysis provides a clear, comprehensive, and unified overview of state-of-the-art theory
Publisher: CRC Press
ISBN: 142001157X
Category : Mathematics
Languages : en
Pages : 633
Book Description
Although many books currently available describe statistical models and methods for analyzing longitudinal data, they do not highlight connections between various research threads in the statistical literature. Responding to this void, Longitudinal Data Analysis provides a clear, comprehensive, and unified overview of state-of-the-art theory
Longitudinal Data Analysis
Author: Jason Newsom
Publisher: Routledge
ISBN: 1136705473
Category : Psychology
Languages : en
Pages : 407
Book Description
This book provides accessible treatment to state-of-the-art approaches to analyzing longitudinal studies. Comprehensive coverage of the most popular analysis tools allows readers to pick and choose the techniques that best fit their research. The analyses are illustrated with examples from major longitudinal data sets including practical information about their content and design. Illustrations from popular software packages offer tips on how to interpret the results. Each chapter features suggested readings for additional study and a list of articles that further illustrate how to implement the analysis and report the results. Syntax examples for several software packages for each of the chapter examples are provided at www.psypress.com/longitudinal-data-analysis. Although many of the examples address health or social science questions related to aging, readers from other disciplines will find the analyses relevant to their work. In addition to demonstrating statistical analysis of longitudinal data, the book shows how to interpret and analyze the results within the context of the research design. The methods covered in this book are applicable to a range of applied problems including short- to long-term longitudinal studies using a range of sample sizes. The book provides non-technical, practical introductions to the concepts and issues relevant to longitudinal analysis. Topics include use of publicly available data sets, weighting and adjusting for complex sampling designs with longitudinal studies, missing data and attrition, measurement issues related to longitudinal research, the use of ANOVA and regression for average change over time, mediation analysis, growth curve models, basic and advanced structural equation models, and survival analysis. An ideal supplement for graduate level courses on data analysis and/or longitudinal modeling taught in psychology, gerontology, public health, human development, family studies, medicine, sociology, social work, and other behavioral, social, and health sciences, this multidisciplinary book will also appeal to researchers in these fields.
Publisher: Routledge
ISBN: 1136705473
Category : Psychology
Languages : en
Pages : 407
Book Description
This book provides accessible treatment to state-of-the-art approaches to analyzing longitudinal studies. Comprehensive coverage of the most popular analysis tools allows readers to pick and choose the techniques that best fit their research. The analyses are illustrated with examples from major longitudinal data sets including practical information about their content and design. Illustrations from popular software packages offer tips on how to interpret the results. Each chapter features suggested readings for additional study and a list of articles that further illustrate how to implement the analysis and report the results. Syntax examples for several software packages for each of the chapter examples are provided at www.psypress.com/longitudinal-data-analysis. Although many of the examples address health or social science questions related to aging, readers from other disciplines will find the analyses relevant to their work. In addition to demonstrating statistical analysis of longitudinal data, the book shows how to interpret and analyze the results within the context of the research design. The methods covered in this book are applicable to a range of applied problems including short- to long-term longitudinal studies using a range of sample sizes. The book provides non-technical, practical introductions to the concepts and issues relevant to longitudinal analysis. Topics include use of publicly available data sets, weighting and adjusting for complex sampling designs with longitudinal studies, missing data and attrition, measurement issues related to longitudinal research, the use of ANOVA and regression for average change over time, mediation analysis, growth curve models, basic and advanced structural equation models, and survival analysis. An ideal supplement for graduate level courses on data analysis and/or longitudinal modeling taught in psychology, gerontology, public health, human development, family studies, medicine, sociology, social work, and other behavioral, social, and health sciences, this multidisciplinary book will also appeal to researchers in these fields.
Longitudinal Structural Equation Modeling
Author: Jason T. Newsom
Publisher: Taylor & Francis
ISBN: 1000905977
Category : Psychology
Languages : en
Pages : 522
Book Description
Longitudinal Structural Equation Modeling is a comprehensive resource that reviews structural equation modeling (SEM) strategies for longitudinal data to help readers determine which modeling options are available for which hypotheses. This accessibly written book explores a range of models, from basic to sophisticated, including the statistical and conceptual underpinnings that are the building blocks of the analyses. By exploring connections between models, it demonstrates how SEM is related to other longitudinal data techniques and shows when to choose one analysis over another. Newsom emphasizes concepts and practical guidance for applied research rather than focusing on mathematical proofs, and new terms are highlighted and defined in the glossary. Figures are included for every model along with detailed discussions of model specification and implementation issues and each chapter also includes examples of each model type, descriptions of model extensions, comment sections that provide practical guidance, and recommended readings. Expanded with new and updated material, this edition includes many recent developments, a new chapter on growth mixture modeling, and new examples. Ideal for graduate courses on longitudinal (data) analysis, advanced SEM, longitudinal SEM, and/or advanced data (quantitative) analysis taught in the behavioral, social, and health sciences, this new edition will continue to appeal to researchers in these fields.
Publisher: Taylor & Francis
ISBN: 1000905977
Category : Psychology
Languages : en
Pages : 522
Book Description
Longitudinal Structural Equation Modeling is a comprehensive resource that reviews structural equation modeling (SEM) strategies for longitudinal data to help readers determine which modeling options are available for which hypotheses. This accessibly written book explores a range of models, from basic to sophisticated, including the statistical and conceptual underpinnings that are the building blocks of the analyses. By exploring connections between models, it demonstrates how SEM is related to other longitudinal data techniques and shows when to choose one analysis over another. Newsom emphasizes concepts and practical guidance for applied research rather than focusing on mathematical proofs, and new terms are highlighted and defined in the glossary. Figures are included for every model along with detailed discussions of model specification and implementation issues and each chapter also includes examples of each model type, descriptions of model extensions, comment sections that provide practical guidance, and recommended readings. Expanded with new and updated material, this edition includes many recent developments, a new chapter on growth mixture modeling, and new examples. Ideal for graduate courses on longitudinal (data) analysis, advanced SEM, longitudinal SEM, and/or advanced data (quantitative) analysis taught in the behavioral, social, and health sciences, this new edition will continue to appeal to researchers in these fields.
Longitudinal Data Analysis
Author: Professor Catrien C J H C J H Bijleveld
Publisher: SAGE
ISBN: 9781446231586
Category : Social Science
Languages : en
Pages : 462
Book Description
By looking at the processes of change over time - by carrying out longitudinal studies - researchers answer questions about learning, development, educational growth, social change and medical outcomes. However, longitudinal research has many faces. This book examines all the main approaches as well as newer developments (such as structural equation modelling, multilevel modelling and optimal scaling) to enable the reader to gain a thorough understanding of the approach and make appropriate decisions about which technique can be applied to the research problem. Conceptual explanations are used to keep technical terms to a minimum; examples are provided for each approach; issues of design, measurement and significance are considered; and a standard notation is used throughout.
Publisher: SAGE
ISBN: 9781446231586
Category : Social Science
Languages : en
Pages : 462
Book Description
By looking at the processes of change over time - by carrying out longitudinal studies - researchers answer questions about learning, development, educational growth, social change and medical outcomes. However, longitudinal research has many faces. This book examines all the main approaches as well as newer developments (such as structural equation modelling, multilevel modelling and optimal scaling) to enable the reader to gain a thorough understanding of the approach and make appropriate decisions about which technique can be applied to the research problem. Conceptual explanations are used to keep technical terms to a minimum; examples are provided for each approach; issues of design, measurement and significance are considered; and a standard notation is used throughout.
Longitudinal Research with Latent Variables
Author: Kees van Montfort
Publisher: Springer Science & Business Media
ISBN: 3642117600
Category : Mathematics
Languages : en
Pages : 311
Book Description
Since Charles Spearman published his seminal paper on factor analysis in 1904 and Karl Joresk ̈ og replaced the observed variables in an econometric structural equation model by latent factors in 1970, causal modelling by means of latent variables has become the standard in the social and behavioural sciences. Indeed, the central va- ables that social and behavioural theories deal with, can hardly ever be identi?ed as observed variables. Statistical modelling has to take account of measurement - rors and invalidities in the observed variables and so address the underlying latent variables. Moreover, during the past decades it has been widely agreed on that serious causal modelling should be based on longitudinal data. It is especially in the ?eld of longitudinal research and analysis, including panel research, that progress has been made in recent years. Many comprehensive panel data sets as, for example, on human development and voting behaviour have become available for analysis. The number of publications based on longitudinal data has increased immensely. Papers with causal claims based on cross-sectional data only experience rejection just for that reason.
Publisher: Springer Science & Business Media
ISBN: 3642117600
Category : Mathematics
Languages : en
Pages : 311
Book Description
Since Charles Spearman published his seminal paper on factor analysis in 1904 and Karl Joresk ̈ og replaced the observed variables in an econometric structural equation model by latent factors in 1970, causal modelling by means of latent variables has become the standard in the social and behavioural sciences. Indeed, the central va- ables that social and behavioural theories deal with, can hardly ever be identi?ed as observed variables. Statistical modelling has to take account of measurement - rors and invalidities in the observed variables and so address the underlying latent variables. Moreover, during the past decades it has been widely agreed on that serious causal modelling should be based on longitudinal data. It is especially in the ?eld of longitudinal research and analysis, including panel research, that progress has been made in recent years. Many comprehensive panel data sets as, for example, on human development and voting behaviour have become available for analysis. The number of publications based on longitudinal data has increased immensely. Papers with causal claims based on cross-sectional data only experience rejection just for that reason.
Using Mplus for Structural Equation Modeling
Author: E. Kevin Kelloway
Publisher: SAGE Publications, Incorporated
ISBN: 9781452291475
Category : Social Science
Languages : en
Pages : 0
Book Description
Ideal for researchers and graduate students in the social sciences who require knowledge of structural equation modeling techniques to answer substantive research questions, Using Mplus for Structural Equation Modeling provides a reader-friendly introduction to the major types of structural equation models implemented in the Mplus framework. This practical book, which updates author E. Kevin Kelloway’s 1998 book Using LISREL for Structural Equation Modeling, retains the successful five-step process employed in the earlier book, with a thorough update for use in the Mplus environment. Kelloway provides an overview of structural equation modeling techniques in Mplus, including the estimation of confirmatory factor analysis and observed variable path analysis. He also covers multilevel modeling for hypothesis testing in real life settings and offers an introduction to the extended capabilities of Mplus, such as exploratory structural equation modeling and estimation and testing of mediated relationships. A sample application with the source code, printout, and results is presented for each type of analysis. ”An excellent book on the ins and outs of using Mplus, as well as the practice of structural equation modeling in applied research.” —Kevin J. Grimm, University of California, Davis
Publisher: SAGE Publications, Incorporated
ISBN: 9781452291475
Category : Social Science
Languages : en
Pages : 0
Book Description
Ideal for researchers and graduate students in the social sciences who require knowledge of structural equation modeling techniques to answer substantive research questions, Using Mplus for Structural Equation Modeling provides a reader-friendly introduction to the major types of structural equation models implemented in the Mplus framework. This practical book, which updates author E. Kevin Kelloway’s 1998 book Using LISREL for Structural Equation Modeling, retains the successful five-step process employed in the earlier book, with a thorough update for use in the Mplus environment. Kelloway provides an overview of structural equation modeling techniques in Mplus, including the estimation of confirmatory factor analysis and observed variable path analysis. He also covers multilevel modeling for hypothesis testing in real life settings and offers an introduction to the extended capabilities of Mplus, such as exploratory structural equation modeling and estimation and testing of mediated relationships. A sample application with the source code, printout, and results is presented for each type of analysis. ”An excellent book on the ins and outs of using Mplus, as well as the practice of structural equation modeling in applied research.” —Kevin J. Grimm, University of California, Davis
Growth Modeling
Author: Kevin J. Grimm
Publisher: Guilford Publications
ISBN: 1462526063
Category : Social Science
Languages : en
Pages : 558
Book Description
Growth models are among the core methods for analyzing how and when people change. Discussing both structural equation and multilevel modeling approaches, this book leads readers step by step through applying each model to longitudinal data to answer particular research questions. It demonstrates cutting-edge ways to describe linear and nonlinear change patterns, examine within-person and between-person differences in change, study change in latent variables, identify leading and lagging indicators of change, evaluate co-occurring patterns of change across multiple variables, and more. User-friendly features include real data examples, code (for Mplus or NLMIXED in SAS, and OpenMx or nlme in R), discussion of the output, and interpretation of each model's results. User-Friendly Features *Real, worked-through longitudinal data examples serving as illustrations in each chapter. *Script boxes that provide code for fitting the models to example data and facilitate application to the reader's own data. *"Important Considerations" sections offering caveats, warnings, and recommendations for the use of specific models. *Companion website supplying datasets and syntax for the book's examples, along with additional code in SAS/R for linear mixed-effects modeling.
Publisher: Guilford Publications
ISBN: 1462526063
Category : Social Science
Languages : en
Pages : 558
Book Description
Growth models are among the core methods for analyzing how and when people change. Discussing both structural equation and multilevel modeling approaches, this book leads readers step by step through applying each model to longitudinal data to answer particular research questions. It demonstrates cutting-edge ways to describe linear and nonlinear change patterns, examine within-person and between-person differences in change, study change in latent variables, identify leading and lagging indicators of change, evaluate co-occurring patterns of change across multiple variables, and more. User-friendly features include real data examples, code (for Mplus or NLMIXED in SAS, and OpenMx or nlme in R), discussion of the output, and interpretation of each model's results. User-Friendly Features *Real, worked-through longitudinal data examples serving as illustrations in each chapter. *Script boxes that provide code for fitting the models to example data and facilitate application to the reader's own data. *"Important Considerations" sections offering caveats, warnings, and recommendations for the use of specific models. *Companion website supplying datasets and syntax for the book's examples, along with additional code in SAS/R for linear mixed-effects modeling.