Author: Phillip E. Crouse
Publisher:
ISBN:
Category : Embankments
Languages : en
Pages : 252
Book Description
Long-term Field Performance of Geosynthetic-reinforced Soil Retaining Walls
Author: Phillip E. Crouse
Publisher:
ISBN:
Category : Embankments
Languages : en
Pages : 252
Book Description
Publisher:
ISBN:
Category : Embankments
Languages : en
Pages : 252
Book Description
Geosynthetic Reinforced Soil (GRS) Walls
Author: Jonathan T. H. Wu
Publisher: John Wiley & Sons
ISBN: 1119375843
Category : Technology & Engineering
Languages : en
Pages : 414
Book Description
The first book to provide a detailed overview of Geosynthetic Reinforced Soil Walls Geosynthetic Reinforced Soil (GRS) Walls deploy horizontal layers of closely spaced tensile inclusion in the fill material to achieve stability of a soil mass. GRS walls are more adaptable to different environmental conditions, more economical, and offer high performance in a wide range of transportation infrastructure applications. This book addresses both GRS and GMSE, with a much stronger emphasis on the former. For completeness, it begins with a review of shear strength of soils and classical earth pressure theories. It then goes on to examine the use of geosynthetics as reinforcement, and followed by the load-deformation behavior of GRS mass as a soil-geosynthetic composite, reinforcing mechanisms of GRS, and GRS walls with different types of facing. Finally, the book finishes by covering design concepts with design examples for different loading and geometric conditions, and the construction of GRS walls, including typical construction procedures and general construction guidelines. The number of GRS walls and abutments built to date is relatively low due to lack of understanding of GRS. While failure rate of GMSE has been estimated to be around 5%, failure of GRS has been found to be practically nil, with studies suggesting many advantages, including a smaller susceptibility to long-term creep and stronger resistance to seismic loads when well-compacted granular fill is employed. Geosynthetic Reinforced Soil (GRS) Walls will serve as an excellent guide or reference for wall projects such as transportation infrastructure—including roadways, bridges, retaining walls, and earth slopes—that are in dire need of repair and replacement in the U.S. and abroad. Covers both GRS and GMSE (MSE with geosynthetics as reinforcement); with much greater emphasis on GRS walls Showcases reinforcing mechanisms, engineering behavior, and design concepts of GRS and includes many step-by-step design examples Features information on typical construction procedures and general construction guidelines Includes hundreds of line drawings and photos Geosynthetic Reinforced Soil (GRS) Walls is an important book for practicing geotechnical engineers and structural engineers, as well as for advanced students of civil, structural, and geotechnical engineering.
Publisher: John Wiley & Sons
ISBN: 1119375843
Category : Technology & Engineering
Languages : en
Pages : 414
Book Description
The first book to provide a detailed overview of Geosynthetic Reinforced Soil Walls Geosynthetic Reinforced Soil (GRS) Walls deploy horizontal layers of closely spaced tensile inclusion in the fill material to achieve stability of a soil mass. GRS walls are more adaptable to different environmental conditions, more economical, and offer high performance in a wide range of transportation infrastructure applications. This book addresses both GRS and GMSE, with a much stronger emphasis on the former. For completeness, it begins with a review of shear strength of soils and classical earth pressure theories. It then goes on to examine the use of geosynthetics as reinforcement, and followed by the load-deformation behavior of GRS mass as a soil-geosynthetic composite, reinforcing mechanisms of GRS, and GRS walls with different types of facing. Finally, the book finishes by covering design concepts with design examples for different loading and geometric conditions, and the construction of GRS walls, including typical construction procedures and general construction guidelines. The number of GRS walls and abutments built to date is relatively low due to lack of understanding of GRS. While failure rate of GMSE has been estimated to be around 5%, failure of GRS has been found to be practically nil, with studies suggesting many advantages, including a smaller susceptibility to long-term creep and stronger resistance to seismic loads when well-compacted granular fill is employed. Geosynthetic Reinforced Soil (GRS) Walls will serve as an excellent guide or reference for wall projects such as transportation infrastructure—including roadways, bridges, retaining walls, and earth slopes—that are in dire need of repair and replacement in the U.S. and abroad. Covers both GRS and GMSE (MSE with geosynthetics as reinforcement); with much greater emphasis on GRS walls Showcases reinforcing mechanisms, engineering behavior, and design concepts of GRS and includes many step-by-step design examples Features information on typical construction procedures and general construction guidelines Includes hundreds of line drawings and photos Geosynthetic Reinforced Soil (GRS) Walls is an important book for practicing geotechnical engineers and structural engineers, as well as for advanced students of civil, structural, and geotechnical engineering.
Geosynthetic Reinforced Soil (GRS) Walls
Author: Jonathan T. H. Wu
Publisher: John Wiley & Sons
ISBN: 111937586X
Category : Technology & Engineering
Languages : en
Pages : 527
Book Description
The first book to provide a detailed overview of Geosynthetic Reinforced Soil Walls Geosynthetic Reinforced Soil (GRS) Walls deploy horizontal layers of closely spaced tensile inclusion in the fill material to achieve stability of a soil mass. GRS walls are more adaptable to different environmental conditions, more economical, and offer high performance in a wide range of transportation infrastructure applications. This book addresses both GRS and GMSE, with a much stronger emphasis on the former. For completeness, it begins with a review of shear strength of soils and classical earth pressure theories. It then goes on to examine the use of geosynthetics as reinforcement, and followed by the load-deformation behavior of GRS mass as a soil-geosynthetic composite, reinforcing mechanisms of GRS, and GRS walls with different types of facing. Finally, the book finishes by covering design concepts with design examples for different loading and geometric conditions, and the construction of GRS walls, including typical construction procedures and general construction guidelines. The number of GRS walls and abutments built to date is relatively low due to lack of understanding of GRS. While failure rate of GMSE has been estimated to be around 5%, failure of GRS has been found to be practically nil, with studies suggesting many advantages, including a smaller susceptibility to long-term creep and stronger resistance to seismic loads when well-compacted granular fill is employed. Geosynthetic Reinforced Soil (GRS) Walls will serve as an excellent guide or reference for wall projects such as transportation infrastructure—including roadways, bridges, retaining walls, and earth slopes—that are in dire need of repair and replacement in the U.S. and abroad. Covers both GRS and GMSE (MSE with geosynthetics as reinforcement); with much greater emphasis on GRS walls Showcases reinforcing mechanisms, engineering behavior, and design concepts of GRS and includes many step-by-step design examples Features information on typical construction procedures and general construction guidelines Includes hundreds of line drawings and photos Geosynthetic Reinforced Soil (GRS) Walls is an important book for practicing geotechnical engineers and structural engineers, as well as for advanced students of civil, structural, and geotechnical engineering.
Publisher: John Wiley & Sons
ISBN: 111937586X
Category : Technology & Engineering
Languages : en
Pages : 527
Book Description
The first book to provide a detailed overview of Geosynthetic Reinforced Soil Walls Geosynthetic Reinforced Soil (GRS) Walls deploy horizontal layers of closely spaced tensile inclusion in the fill material to achieve stability of a soil mass. GRS walls are more adaptable to different environmental conditions, more economical, and offer high performance in a wide range of transportation infrastructure applications. This book addresses both GRS and GMSE, with a much stronger emphasis on the former. For completeness, it begins with a review of shear strength of soils and classical earth pressure theories. It then goes on to examine the use of geosynthetics as reinforcement, and followed by the load-deformation behavior of GRS mass as a soil-geosynthetic composite, reinforcing mechanisms of GRS, and GRS walls with different types of facing. Finally, the book finishes by covering design concepts with design examples for different loading and geometric conditions, and the construction of GRS walls, including typical construction procedures and general construction guidelines. The number of GRS walls and abutments built to date is relatively low due to lack of understanding of GRS. While failure rate of GMSE has been estimated to be around 5%, failure of GRS has been found to be practically nil, with studies suggesting many advantages, including a smaller susceptibility to long-term creep and stronger resistance to seismic loads when well-compacted granular fill is employed. Geosynthetic Reinforced Soil (GRS) Walls will serve as an excellent guide or reference for wall projects such as transportation infrastructure—including roadways, bridges, retaining walls, and earth slopes—that are in dire need of repair and replacement in the U.S. and abroad. Covers both GRS and GMSE (MSE with geosynthetics as reinforcement); with much greater emphasis on GRS walls Showcases reinforcing mechanisms, engineering behavior, and design concepts of GRS and includes many step-by-step design examples Features information on typical construction procedures and general construction guidelines Includes hundreds of line drawings and photos Geosynthetic Reinforced Soil (GRS) Walls is an important book for practicing geotechnical engineers and structural engineers, as well as for advanced students of civil, structural, and geotechnical engineering.
Long-term Field Performance of Geosynthetic-reinforced Soil Retaining Walls
Author: Phillip E. Crouse
Publisher:
ISBN:
Category : Embankments
Languages : en
Pages : 252
Book Description
Publisher:
ISBN:
Category : Embankments
Languages : en
Pages : 252
Book Description
Ground Improvement
Author: Professor Jian Chu
Publisher: Elsevier
ISBN: 0080457363
Category : Science
Languages : en
Pages : 1137
Book Description
- The first book of its kind, providing over thirty real-life case studies of ground improvement projects selected by the worlds top experts in ground improvement from around the globe. - Volume 3 of the highly regarded Elsevier Geo-engineering book series coordinated by the Series Editor: Professor John A Hudson FREng. - An extremely reader friendly chapter format. - Discusses wider economical and environmental issues facing scientists in the ground improvement.Ground improvement has been both a science and art, with significant developments observed through ancient history. From the use of straw as blended infill with soils for additional strength during the ancient Roman civilizations, and the use of elephants for compaction of earth dams during the early Asian civilizations, the concepts of reinforced earth with geosynthetics, use of electrokinetics and thermal modifications of soils have come a long way. The use of large and stiff stone columns and subsequent sand drains in the past has now been replaced by quicker to install and more effective prefabricated vertical drains, which have also eliminated the need for more expensive soil improvement methods.The early selection and application of the most appropriate ground improvement techniques can improve considerably not only the design and performance of foundations and earth structures, including embankments, cut slopes, roads, railways and tailings dams, but also result in their cost-effectiveness. Ground improvement works have become increasingly challenging when more and more problematic soils and marginal land have to be utilized for infrastructure development.This edited compilation contains a collection of Chapters from invited experts in various areas of ground improvement, who have illustrated the basic concepts and the applications of different ground improvement techniques using real projects that they have been involved in. The case histories from many countries ranging from Asia, America, Australia and Europe are addressed.
Publisher: Elsevier
ISBN: 0080457363
Category : Science
Languages : en
Pages : 1137
Book Description
- The first book of its kind, providing over thirty real-life case studies of ground improvement projects selected by the worlds top experts in ground improvement from around the globe. - Volume 3 of the highly regarded Elsevier Geo-engineering book series coordinated by the Series Editor: Professor John A Hudson FREng. - An extremely reader friendly chapter format. - Discusses wider economical and environmental issues facing scientists in the ground improvement.Ground improvement has been both a science and art, with significant developments observed through ancient history. From the use of straw as blended infill with soils for additional strength during the ancient Roman civilizations, and the use of elephants for compaction of earth dams during the early Asian civilizations, the concepts of reinforced earth with geosynthetics, use of electrokinetics and thermal modifications of soils have come a long way. The use of large and stiff stone columns and subsequent sand drains in the past has now been replaced by quicker to install and more effective prefabricated vertical drains, which have also eliminated the need for more expensive soil improvement methods.The early selection and application of the most appropriate ground improvement techniques can improve considerably not only the design and performance of foundations and earth structures, including embankments, cut slopes, roads, railways and tailings dams, but also result in their cost-effectiveness. Ground improvement works have become increasingly challenging when more and more problematic soils and marginal land have to be utilized for infrastructure development.This edited compilation contains a collection of Chapters from invited experts in various areas of ground improvement, who have illustrated the basic concepts and the applications of different ground improvement techniques using real projects that they have been involved in. The case histories from many countries ranging from Asia, America, Australia and Europe are addressed.
Landmarks in Earth Reinforcement
Author: H. Ochiai
Publisher: CRC Press
ISBN: 9789026518638
Category : Technology & Engineering
Languages : en
Pages : 420
Book Description
Earth reinforcing techniques are increasingly becoming a useful, powerful and economical solution to various problems encountered in geotechnical engineering practice. Expansion of the experiences and knowledge in this area has succeeded in developing new techniques and their applications to geotechnical engineering problems. In order to discuss the latest experiences and knowledge, and with the purpose of spreading them all over the world for further development, the IS Kyushi conference series on the subject of earth reinforcement have been held in Fukuoka, Japan, every four years since 1988. This fourth symposium, entitled "Landmarks in Earth Reinforcement", is a continuation of the series IS Kyushu conferences, and also aims at being one of the landmarks in the progress of modern earth reinforcement practice. The first volume contains 137 papers selected for the symposium covering almost every aspect of earth reinforcement. The second volume contains texts of the special and keynote lectures.
Publisher: CRC Press
ISBN: 9789026518638
Category : Technology & Engineering
Languages : en
Pages : 420
Book Description
Earth reinforcing techniques are increasingly becoming a useful, powerful and economical solution to various problems encountered in geotechnical engineering practice. Expansion of the experiences and knowledge in this area has succeeded in developing new techniques and their applications to geotechnical engineering problems. In order to discuss the latest experiences and knowledge, and with the purpose of spreading them all over the world for further development, the IS Kyushi conference series on the subject of earth reinforcement have been held in Fukuoka, Japan, every four years since 1988. This fourth symposium, entitled "Landmarks in Earth Reinforcement", is a continuation of the series IS Kyushu conferences, and also aims at being one of the landmarks in the progress of modern earth reinforcement practice. The first volume contains 137 papers selected for the symposium covering almost every aspect of earth reinforcement. The second volume contains texts of the special and keynote lectures.
Assessing the Long-term Performance of Mechanically Stabilized Earth Walls
Author: Travis M. Gerber
Publisher: Transportation Research Board
ISBN: 0309223741
Category : Science
Languages : en
Pages : 211
Book Description
"Mechanically stabilized earth (MSE) walls are an important class of infrastructure assets whose long-term performance depends on various factors. As with most all other classes of assets, MSE walls need periodic inspection and assessment of performance. To date, some agencies have established MSE wall monitoring programs, whereas others are looking for guidance, tools, and funding to establish their own monitoring programs. The objective of this synthesis project is to determine how transportation agencies monitor, assess, and predict the long-term performance of MSE walls. The information used to develop this synthesis came from a literature review together with a survey and interviews. Of the 52 U.S. and 12 Canadian targeted survey recipients, 39 and five, respectively, responded. This synthesis reveals that unlike bridges and pavements, MSE walls and retaining walls in general are often overlooked as assets. Fewer than one-quarter of state-level transportation agencies in the United States have developed some type of MSE wall inventory beyond that which may be captured as part of their bridge inventories. Fewer still have the methods and means to populate their inventories with data from ongoing inspections from which assessments of wall performance can be made. In the United States, there is no widely used, consistently applied system for managing MSE walls. Wall inventory and monitoring practices vary between agencies. This synthesis examines existing practices concerning the nature, scope, and extent of existing MSE wall inventories. It also examines the collection of MSE wall data, including the types of performance data collected, how they are maintained in wall inventories and databases, the frequency of inventory activities, and assessment practices relevant to reinforcement corrosion and degradation. Later parts of this synthesis discuss how MSE wall performance data are assessed, interpreted, and used in asset management decisions. This synthesis finds that the most well-implemented wall inventory and assessment system in the United States is the Wall Inventory Program developed by FHWA for the National Park Service. However, this system, like some others, uses 'condition narratives' in a process that can be somewhat cumbersome and subjective. Other systems use more direct numeric scales to describe wall conditions, and an advantage of such systems is that they are often compatible with those used in assessments of bridges. As experience with MSE walls accumulates, agencies will likely continue to develop, refine, and better calibrate procedures affecting design, construction, condition assessment, and asset management decisions. One portion of this synthesis is dedicated to summarizing the actions taken thus far by survey respondents to improve the long-term performance of their MSE walls. Many agencies prescribe the use of a pre-approved wall design and/or wall supplier. Other actions or policies frequently focus on drainage-related issues."--Summary.
Publisher: Transportation Research Board
ISBN: 0309223741
Category : Science
Languages : en
Pages : 211
Book Description
"Mechanically stabilized earth (MSE) walls are an important class of infrastructure assets whose long-term performance depends on various factors. As with most all other classes of assets, MSE walls need periodic inspection and assessment of performance. To date, some agencies have established MSE wall monitoring programs, whereas others are looking for guidance, tools, and funding to establish their own monitoring programs. The objective of this synthesis project is to determine how transportation agencies monitor, assess, and predict the long-term performance of MSE walls. The information used to develop this synthesis came from a literature review together with a survey and interviews. Of the 52 U.S. and 12 Canadian targeted survey recipients, 39 and five, respectively, responded. This synthesis reveals that unlike bridges and pavements, MSE walls and retaining walls in general are often overlooked as assets. Fewer than one-quarter of state-level transportation agencies in the United States have developed some type of MSE wall inventory beyond that which may be captured as part of their bridge inventories. Fewer still have the methods and means to populate their inventories with data from ongoing inspections from which assessments of wall performance can be made. In the United States, there is no widely used, consistently applied system for managing MSE walls. Wall inventory and monitoring practices vary between agencies. This synthesis examines existing practices concerning the nature, scope, and extent of existing MSE wall inventories. It also examines the collection of MSE wall data, including the types of performance data collected, how they are maintained in wall inventories and databases, the frequency of inventory activities, and assessment practices relevant to reinforcement corrosion and degradation. Later parts of this synthesis discuss how MSE wall performance data are assessed, interpreted, and used in asset management decisions. This synthesis finds that the most well-implemented wall inventory and assessment system in the United States is the Wall Inventory Program developed by FHWA for the National Park Service. However, this system, like some others, uses 'condition narratives' in a process that can be somewhat cumbersome and subjective. Other systems use more direct numeric scales to describe wall conditions, and an advantage of such systems is that they are often compatible with those used in assessments of bridges. As experience with MSE walls accumulates, agencies will likely continue to develop, refine, and better calibrate procedures affecting design, construction, condition assessment, and asset management decisions. One portion of this synthesis is dedicated to summarizing the actions taken thus far by survey respondents to improve the long-term performance of their MSE walls. Many agencies prescribe the use of a pre-approved wall design and/or wall supplier. Other actions or policies frequently focus on drainage-related issues."--Summary.
Pre-failure Deformation Characteristics of Geomaterials
Author: Jamiolkowski
Publisher: CRC Press
ISBN: 9789058090775
Category : Deformations (Mechanics)
Languages : en
Pages : 496
Book Description
The second of two volumes from the 1999 conference (v.1 was published in 1999) makes available the opening lecture on pre-failure behavior of soils as construction materials, as well as 24 contributions on various themes of the conference, laboratory tests, in situ tests, stress-strain behavior, applications and case histories. Some specific topics include time-dependent deformation characteristics of stiff geomaterials, boundary value problems in geotechnical engineering, and the effect of reinforcement due to choice of geogrid. There is no subject index. c. Book News Inc.
Publisher: CRC Press
ISBN: 9789058090775
Category : Deformations (Mechanics)
Languages : en
Pages : 496
Book Description
The second of two volumes from the 1999 conference (v.1 was published in 1999) makes available the opening lecture on pre-failure behavior of soils as construction materials, as well as 24 contributions on various themes of the conference, laboratory tests, in situ tests, stress-strain behavior, applications and case histories. Some specific topics include time-dependent deformation characteristics of stiff geomaterials, boundary value problems in geotechnical engineering, and the effect of reinforcement due to choice of geogrid. There is no subject index. c. Book News Inc.
Numerical Models in Geomechanics
Author: G.N. Pande
Publisher: CRC Press
ISBN: 9789058096364
Category : Technology & Engineering
Languages : en
Pages : 760
Book Description
Reflecting the current research and advances made in the application of numerical methods in geotechnical engineering, this volume details proceedings of the Ninth International Symposium on 'Numerical Models in Geomechanics - NUMOG IX' held in Ottawa, Canada, 25-27 August 2004. Highlighting a number of new developments in the area, papers concentrate upon the following four main areas: * constitutive relations for geomaterials * numerical algorithms: formulation and performance * modelling of transient, coupled and dynamic problems * application of numerical techniques to practical problems. Representing the most advanced, modern findings in the field, Numerical Models in Geomechanics is a comprehensive and impeccably-researched text, ideal for students and researchers as well as practising engineers.
Publisher: CRC Press
ISBN: 9789058096364
Category : Technology & Engineering
Languages : en
Pages : 760
Book Description
Reflecting the current research and advances made in the application of numerical methods in geotechnical engineering, this volume details proceedings of the Ninth International Symposium on 'Numerical Models in Geomechanics - NUMOG IX' held in Ottawa, Canada, 25-27 August 2004. Highlighting a number of new developments in the area, papers concentrate upon the following four main areas: * constitutive relations for geomaterials * numerical algorithms: formulation and performance * modelling of transient, coupled and dynamic problems * application of numerical techniques to practical problems. Representing the most advanced, modern findings in the field, Numerical Models in Geomechanics is a comprehensive and impeccably-researched text, ideal for students and researchers as well as practising engineers.
Designing with Geosynthetics
Author: Robert M. Koerner
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 680
Book Description
Geosynthetic materials have entered the mainstream in the professional arena and are no longer considered new construction material. Professionals need to keep up with the nuances of how geosynthetics work. Emphasizes design by function; overviews all types of geosynthetics, with stand-alone units on particular materials. Uses S.I. units for all problems and examples. Expands coverage of containers and tubes in the geotextile chapter. Discusses walls and slope design, including seismic analysis, in the geogrid chapter. Treats wet landfills, agricultural waste, waste stability, and dam waterproofing in the geomembrane chapter. Discusses new products and related performances in the geosynthetic clay liner chapter. Discusses new products and related behavior, including fiber reinforcement and wall drainage, in the geocomposite chapter. Adds a completely new chapter on geofoam. A useful reference for transportation, geotechnical, environmental, and hydraulics professionals and engineers.
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 680
Book Description
Geosynthetic materials have entered the mainstream in the professional arena and are no longer considered new construction material. Professionals need to keep up with the nuances of how geosynthetics work. Emphasizes design by function; overviews all types of geosynthetics, with stand-alone units on particular materials. Uses S.I. units for all problems and examples. Expands coverage of containers and tubes in the geotextile chapter. Discusses walls and slope design, including seismic analysis, in the geogrid chapter. Treats wet landfills, agricultural waste, waste stability, and dam waterproofing in the geomembrane chapter. Discusses new products and related performances in the geosynthetic clay liner chapter. Discusses new products and related behavior, including fiber reinforcement and wall drainage, in the geocomposite chapter. Adds a completely new chapter on geofoam. A useful reference for transportation, geotechnical, environmental, and hydraulics professionals and engineers.